Aims/hypothesisObesity is associated with ageing and increased energy intake, while restriction of energy intake improves health and longevity in multiple organisms; the NAD+-dependent deacetylase sirtuin 1 (SIRT1) is implicated in this process. Pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of the hypothalamus are critical for energy balance regulation, and the level of SIRT1 protein decreases with age in the ARC. In the current study we tested whether conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevents age-associated weight gain and diet-induced obesity.MethodsWe targeted Sirt1 cDNA sequence into the Rosa26 locus and generated conditional Sirt1 knock-in mice. These mice were crossed with mice harbouring either Pomc-Cre or Agrp-Cre and the metabolic variables, food intake, energy expenditure and sympathetic activity in adipose tissue of the resultant mice were analysed. We also used a hypothalamic cell line to investigate the molecular mechanism by which Sirt1 overexpression modulates leptin signalling.ResultsConditional Sirt1 overexpression in mouse POMC or AgRP neurons prevented age-associated weight gain; overexpression in POMC neurons stimulated energy expenditure via increased sympathetic activity in adipose tissue, whereas overexpression in AgRP neurons suppressed food intake. SIRT1 improved leptin sensitivity in hypothalamic neurons in vitro and in vivo by downregulating protein-tyrosine phosphatase 1B, T cell protein-tyrosine phosphatase and suppressor of cytokine signalling 3. However, these phenotypes were absent in mice consuming a high-fat, high-sucrose diet due to decreases in ARC SIRT1 protein and hypothalamic NAD+ levels.Conclusions/interpretationARC SIRT1 is a negative regulator of energy balance, and decline in ARC SIRT1 function contributes to disruption of energy homeostasis by ageing and diet-induced obesity.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-013-3140-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Kitamura T. FoxO1 as a double-edged sword in the pancreas: analysis of pancreas-and -cell-specific FoxO1 knockout mice. Am J Physiol Endocrinol Metab 302: E603-E613, 2012. First published January 3, 2012; doi:10.1152/ajpendo.00469.2011.-Diabetes is characterized by an absolute or relative deficiency of pancreatic -cells. New strategies to accelerate -cell neogenesis or maintain existing -cells are desired for future therapies against diabetes. We previously reported that forkhead box O1 (FoxO1) inhibits -cell growth through a Pdx1-mediated mechanism. However, we also reported that FoxO1 protects against -cell failure via the induction of NeuroD and MafA. Here, we investigate the physiological roles of FoxO1 in the pancreas by generating the mice with deletion of FoxO1 in the domains of the Pdx1 promoter (P-FoxO1-KO) or the insulin 2 promoter (-FoxO1-KO) and analyzing the metabolic parameters and pancreatic morphology under two different conditions of increased metabolic demand: high-fat high-sucrose diet (HFHSD) and db/db background. P-FoxO1-KO, but not -FoxO1-KO, showed improved glucose tolerance with HFHSD. Immunohistochemical analysis revealed that P-FoxO1-KO had increased -cell mass due to increased islet number rather than islet size, indicating accelerated -cell neogenesis. Furthermore, insulin-positive pancreatic duct cells were increased in P-FoxO1-KO but not -FoxO1-KO. In contrast, db/db mice crossed with P-FoxO1-KO or -FoxO1-KO showed more severe glucose intolerance than control db/db mice due to decreased glucose-responsive insulin secretion. Electron microscope analysis revealed fewer insulin granules in FoxO1 knockout db/db mice. We conclude that FoxO1 functions as a double-edged sword in the pancreas; FoxO1 essentially inhibits -cell neogenesis from pancreatic duct cells but is required for the maintenance of insulin secretion under metabolic stress.forkhead box O1; pancreatic -cell; diabetes; insulin secretion PANCREATIC -CELLS secrete insulin to maintain plasma glucose levels in an appropriate physiological range. The development of new strategies to accelerate -cell neogenesis or maintain preexisting -cells is desired for future therapies against diabetes.
Aims/hypothesisThe pancreas and hypothalamus are critical for maintaining nutrient and energy homeostasis, and combined disorders in these organs account for the onset of the metabolic syndrome. Activating transcription factor 3 (ATF3) is an adaptive response transcription factor. The physiological role of ATF3 in the pancreas has been controversial, and its role in the hypothalamus remains unknown. To elucidate the roles of ATF3 in these organs, we generated pancreas- and hypothalamus-specific Atf3 knockout (PHT-Atf3-KO) mice in this study.MethodsWe crossed mice bearing floxed Atf3 alleles with Pdx1-cre mice, in which cre is specifically expressed in the pancreas and hypothalamus, and analysed metabolic variables, pancreatic morphology, food intake, energy expenditure and sympathetic activity in adipose tissue. We also used a hypothalamic cell line to investigate the molecular mechanism by which ATF3 regulates transcription of the gene encoding agouti-related protein (Agrp).ResultsAlthough PHT-Atf3-KO mice displayed better glucose tolerance, neither plasma glucagon nor insulin level was altered in these mice. However, these mice exhibited higher insulin sensitivity, which was accompanied by a leaner phenotype due to decreased food intake and increased energy expenditure. We also observed decreased hypothalamic Agrp expression in PHT-Atf3-KO mice. Importantly, an increase in ATF3 levels is induced by fasting or low glucose in the hypothalamus. We also showed that ATF3 interacts with forkhead box-containing protein, O subfamily 1 (FoxO1) on the Agrp promoter and activates Agrp transcription.Conclusions/interpretationOur results suggest that ATF3 plays an important role in the control of glucose and energy metabolism by regulating Agrp.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-013-2879-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Recent studies have revealed that insulin signaling in pancreatic β-cells and the hypothalamus is critical for maintaining nutrient and energy homeostasis, the failure of which are hallmarks of metabolic syndrome. We previously reported that forkhead transcription factor forkhead box-containing protein of the O subfamily (FoxO)1, a downstream effector of insulin signaling, plays important roles in β-cells and the hypothalamus when we investigated the roles of FoxO1 independently in the pancreas and hypothalamus. However, because metabolic syndrome is caused by the combined disorders in hypothalamus and pancreas, to elucidate the combined implications of FoxO1 in these organs, we generated constitutively active FoxO1 knockin (KI) mice with specific activation in both the hypothalamus and pancreas. The KI mice developed obesity, insulin resistance, glucose intolerance, and hypertriglyceridemia due to increased food intake, decreased energy expenditure, and impaired insulin secretion, which characterize metabolic syndrome. The KI mice also had increased hypothalamic Agouti-related protein and neuropeptide Y levels and decreased uncoupling protein 1 and peroxisome proliferator-activated receptor γ coactivator 1α levels in adipose tissue and skeletal muscle. Impaired insulin secretion was associated with decreased expression of pancreatic and duodenum homeobox 1 (Pdx1), muscyloaponeurotic fibrosarcoma oncogene homolog A (MafA), and neurogenic differentiation 1 (NeuroD) in islets, although β-cell mass was paradoxically increased in KI mice. Based on these results, we propose that uncontrolled FoxO1 activation in the hypothalamus and pancreas accounts for the development of obesity and glucose intolerance, hallmarks of metabolic syndrome.
Miglitol is an alpha-glucosidase inhibitor that improves post-prandial hyperglycemia, and it is the only drug in its class that enters the bloodstream. Anecdotally, miglitol lowers patient body weight more effectively than other alpha-glucosidase inhibitors, but the precise mechanism has not been addressed. Therefore, we analyzed the anti-obesity effects of miglitol in mice and in the HB2 brown adipocyte cell line. Miglitol prevented diet-induced obesity by stimulating energy expenditure without affecting food intake in mice. Long-term miglitol treatment dose-dependently prevented diet-induced obesity and induced mitochondrial gene expression in brown adipose tissue. The anti-obesity effect was independent of preventing carbohydrate digestion in the gastrointestinal tract. Miglitol effectively stimulated energy expenditure in mice fed a high-fat high-monocarbohydrate diet, and intraperitoneal injection of miglitol was sufficient to stimulate energy expenditure in mice. Acarbose, which is a non-absorbable alpha glucosidase inhibitor, also prevented diet-induced obesity, but through a different mechanism: it did not stimulate energy expenditure, but caused indigestion, leading to less energy absorption. Miglitol promoted adrenergic signaling in brown adipocytes in vitro. These data indicate that circulating miglitol stimulates brown adipose tissue and increases energy expenditure, thereby preventing diet-induced obesity. Further optimizing miglitol's effect on brown adipose tissue could lead to a novel anti-obesity drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.