SHANK3 is a scaffolding protein that is highly enriched in excitatory synapses. Mutations in the SHANK3 gene have been linked to neuropsychiatric disorders especially the autism spectrum disorders. SHANK3 deficiency is known to cause impairments in synaptic transmission, but its effects on basic neuronal electrical properties that are more localized to the soma and proximal dendrites remain unclear. Here we confirmed that in heterologous expression systems two different mouse Shank3 isoforms, Shank3A and Shank3C, significantly increase the surface expression of the mouse hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channel. In Shank3 knockout mice, which lack exons 13-16 in the Shank3 gene (both Shank3A and Shank3C are removed) and display a severe behavioural phenotype, the expression of HCN2 is reduced to an undetectable level. The thalamocortical (TC) neurons from the ventrobasal (VB) complex of Shank3 mice demonstrate reduced I current amplitude and correspondingly increased input resistance, negatively shifted resting membrane potential, and abnormal spike firing in both tonic and burst modes. Impressively, these changes closely resemble those of HCN2-/- TC neurons but not of the TC neurons from Shank3 mice, which lack exons 4-9 in the Shank3 gene (Shank3C still exists) and demonstrate moderate behavioural phenotypes. Additionally, Shank3 deficiency increases the ratio of excitatory/inhibitory balance in VB neurons but has a limited impact on the electrical properties of connected thalamic reticular (RTN) neurons. These results provide new understanding about the role of HCN channelopathy in mediating detrimental effects downstream from Shank3 deficiency.
Physiological response to thermal stimuli in mammals is mediated by a structurally diverse class of ion channels, many of which exhibit polymodal behavior. To probe the diversity of biophysical mechanisms of temperature-sensitivity, we characterized the temperature-dependent activation of MthK, a two transmembrane calcium-activated potassium channel from thermophilic archaebacteria. Our functional complementation studies show that these channels are more efficient at rescuing K+ transport at 37°C than at 24°C. Electrophysiological activity of the purified MthK is extremely sensitive (Q10 >100) to heating particularly at low-calcium concentrations whereas channels lacking the calcium-sensing RCK domain are practically insensitive. By analyzing single-channel activities at limiting calcium concentrations, we find that temperature alters the coupling between the cytoplasmic RCK domains and the pore domain. These findings reveal a hitherto unexplored mechanism of temperature-dependent regulation of ion channel gating and shed light on ancient origins of temperature-sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.