Microplastic particles ubiquitously found in the environment are ingested by a huge variety of organisms. Subsequently, microplastic particles can translocate from the gastrointestinal tract into the tissues likely by cellular internalization. The reason for cellular internalization is unknown, since this has only been shown for specifically surface-functionalized particles. We show that environmentally exposed microplastic particles were internalized significantly more often than pristine microplastic particles into macrophages. We identified biomolecules forming an eco-corona on the surface of microplastic particles, suggesting that environmental exposure promotes the cellular internalization of microplastics. Our findings further indicate that cellular internalization is a key route by which microplastic particles translocate into tissues, where they may cause toxicological effects that have implications for the environment and human health.
The widespread distribution of Crustacea across every aquatic ecological niche on Earth is enabled due to their exoskeleton's versatile properties. Especially mineralization of the exoskeleton provides protection against diverse environmental threats. Thereby, the exoskeleton of some entomostracans is extremely phenotypically plastic, especially in response to predators. For instance, the freshwater zooplankton Daphnia forms conspicuous inducible morphological defenses, such as helmets, and can increase the stability of its exoskeleton, which renders them less vulnerable to predation. In this study, we reveal for the first time the chemical composition of the exoskeleton of Daphniamagna, using Raman spectroscopy, to be composed of α-chitin and proteins with embedded amorphous calcium carbonate (ACC). Furthermore, we reveal the exoskeleton's chemical changes associated with inducible defense mechanisms in the form of more substantial mineralization, which is probably correlated with enhanced carapace stability. We, therefore, highlight the importance of calcium-biominerals for inducible morphological defenses in Daphnia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.