Three members of the Puccinia genus, Puccinia
triticina (Pt), P. striiformis f.sp. tritici (Pst), and P. graminis f.sp. tritici (Pgt), cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt. We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs)/kb] nearly twice the level detected in Pt (2.57 SNPs/kb) and that previously reported for Pgt. Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3) mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS) of the HD and STE3 alleles reduced wheat host infection.
Rust fungi are devastating plant pathogens and several Puccinia species have a large economic impact on wheat production worldwide. Disease protection, mostly offered by introgressed host-resistance genes, is often race-specific and rapidly overcome by newly-emerging virulent strains. Extensive new genomic resources have identified vital pathogenicity genes but their study is hampered because of the biotrophic life styles of rust fungi. In cereals, Barley stripe mosaic virus (BSMV)-induced RNAi has emerged as a useful tool to study loss-of-function phenotypes of candidate genes. Expression of pathogen-derived gene fragments in this system can be used to obtain in planta-generated silencing of corresponding genes inside biotrophic pathogens, a technique termed host-induced gene silencing (HIGS). Here we test the effectiveness of BSMV-mediated HIGS in the wheat leaf rust fungus Puccinia triticina (Pt) by targeting three predicted pathogenicity genes, a MAPK, a cyclophilin, and a calcineurin regulatory subunit. Inoculation of BSMV RNAi constructs generated fungal gene-specific siRNA molecules in systemic leaves of wheat plant. Subsequent Pt inoculation resulted in a suppressed disease phenotype and a reduction in endogenous transcript levels of the targeted fungal genes indicating translocation of siRNA molecules from host to fungal cells. Efficiency of this host-generated trans-specific RNAi was enhanced by using BSMV silencing vectors defective in coat protein coupled with introducing fungal gene sequences simultaneously in sense and antisense orientation. The disease suppression indicated the likely involvement of these fungal genes in pathogenicity. This study demonstrates that BSMV-mediated in planta-generated RNAi is an effective strategy for functional genomics in rust fungi.
SUMMARYRust fungi are destructive plant pathogens. The draft genomes of several wheat-infecting species have been released and potential pathogenicity genes identified through comparative analyses to fungal pathogens that are amenable to genetic manipulation. Functional gene analysis tools are needed to understand the infection process of these obligate parasites and to confirm whether predicted pathogenicity genes could become targets for disease control. We have modified an Agrobacterium tumefaciens-mediated in plantainduced transient gene silencing (PITGS) assay for use in Triticum spp. (wheat), and used this assay to target predicted wheat leaf rust fungus, Puccinia triticina (Pt) pathogenicity genes, a MAP kinase (PtMAPK1), a cyclophilin (PtCYC1) and calcineurin B (PtCNB), to analyze their roles in disease. Agroinfiltration effectively delivered hairpin silencing constructs in wheat, leading to the generation of fungal gene-specific siRNA molecules in infiltrated leaves, and resulting in up to 70% reduction in transcription of the endogenous target genes in superinfected Pt. In vivo silencing caused severe disease suppression, compromising fungal growth and sporulation, as viewed by confocal microscopy and measured by reductions in fungal biomass and emergence of uredinia. Interestingly, using the same gene constructs, suppression of infection by Puccinia graminis and Puccinia striiformis was also achieved. Our results show that A. tumefaciens-mediated PITGS can be used as a reverse-genetics tool to discover gene function in rust fungi. This proof-of-concept study indicates that the targeted fungal transcripts might be important in pathogenesis, and could potentially be used as promising targets for developing RNA interference-based resistance against rust fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.