Biosurfactants are economically most sought after biotechnological compounds of the 21st century. However, inefficient bioprocessing has mitigated the economical commercial production of these compounds. Although much work is being done on the use of low-cost substrates for their production, a paucity of literature exists on the upcoming bioprocess optimization strategies and their successes and potential for economical biosurfactant production. This review discusses some of the latest developments and most promising strategies to enhance and economize the biosurfactant production process. Recent market analysis, developments in the field of optimally formulated cost credit substrates for enhanced product formation and subsequent process economization are few of the critical aspects highlighted here. Use of nanoparticles and coproduction of biosurfactant along with other commercially important compounds like enzymes, are other upcoming bioprocess intensification strategies. The recent developments discussed here would not only give an overview of pertinent parameters for economic biosurfactant production but would also bring to fore multiple strategies that would open up new avenues of research on biosurfactant production. This would go a long way in making biosurfactants a commercially successful compound of the current century.
Fermentation of whey by Clostridium acetobutylicum yielded butanol and acetone in a ratio of approximately 100:1. This ratio amounted to only 2:1 in synthetic media with glucose, lactose, or glucose plus galactose as substrates. Removal of citrate from whey and addition of minerals resulted in an increase in the amount of acetone produced. Experiments carried out in a chemostat with a low-phosphate synthetic medium revealed that the butanol/acetone ratio could be increased from 2:1 to 3.8:1 by cofermentation of L-lactate and from 2:1 to 8:1 by iron limitation. The performance of the fermentation in a low-iron glucose medium above pH 5.1 yielded L-lactate as the main product.
Kumbh Mela is one of the largest religious mass gathering events (MGE) involving bathing in rivers. The exponential rise in the number of devotees, from around 0.4 million in 1903 to 120 million in 2013, bathing in small specified sites can have a dramatic impact on the river ecosystem. Here, we present the spatiotemporal profiling of bacterial communities in Godavari River, Nashik, India, comprising five sites during the Kumbh Mela, held in 2015. Assessment of environmental parameters indicated deterioration of water quality. Targeted amplicon sequencing demonstrates approximately 37.5% loss in microbial diversity because of anthropogenic activity during MGE. A significant decrease in phyla viz. Actinobacteria, Chloroflexi, Proteobacteria, and Bacteroidetes was observed, while we noted substantial increase in prevalence of the phylum Firmicutes (94.6%) during MGE. qPCR estimations suggested nearly 130-fold increase in bacterial load during the event. Bayesian mixing model accounted the source of enormous incorporation of bacterial load of human origin. Further, metagenomic imputations depicted increase in virulence and antibiotic resistance genes during the MGE. These observations suggest the striking impact of the mass bathing on river ecosystem. The subsequent increase in infectious diseases and drug-resistant microbes pose a critical public health concern.
A Gram-stain-positive, rod-shaped, non-motile bacterium, strain PRD07, was isolated from Godavari river, India during the world's largest spiritual and religious mass bathing event 'Kumbh Mela'. Molecular analysis using 16S rRNA gene sequencing and phylogenetic analysis reveals the distinct phylogenetic positioning of strain PRD07 within the genus Corynebacterium. The strain demonstrated highest sequence similarity to Corynebacterium imitans DSM 44264 (97.9 %), Corynebacterium appendicis DSM 44531 (97.1 %) and <96.7 % with all other members of the genus Corynebacterium. The G+C content of PRD07 was 68.5 mol% (Tm) and the DNA-DNA hybridization depicts 61.09 % genomic relatedness with C. imitans DSM 44264. Chemotaxonomic assessment of strain PRD07 suggested presence of C16 : 0 (31.6 %), C18 : 0 (3.5 %) and C18 : 1ω9c (58.6 %) as the major cellular fatty acids. The major polar lipids of strain PRD07 were phosphatidylglycerol, diphosphatidylglycerol and glycophospholipid. Differentiating molecular, phylogenetic and chemotaxonomic characteristics of strain PRD07 with its closest relatives necessitated the description of strain PRD07 as a novel species of genus Corynebacterium for which the name Corynebacteriumgodavarianum sp. nov., has been proposed. The type strain is PRD07 (=MCC 3388=KCTC 39803=LMG 29598).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.