Machining can be classified into conventional and unconventional processes. Unconventional Machining Process attracts researchers as it has many processes whose physics is still not that clear and they are highly in market-demand. To predict and understand the physics behind these processes soft computing is being used. Soft computing is an approach of computing which is based on the way a human brain learns and get trained to deal with different situations. Scope of this chapter is limited to one of the soft computing optimizing techniques that is artificial neural network (ANN) and to one of the unconventional machining processes, electrical discharge machining process. This chapter discusses about micromachining on Electric Discharge Machining, its working principle and problems associated with it. Solution to those problems is suggested with the addition of powder in dielectric fluid. The optimization of Material Removal Rate (MRR) is done with the help of ANN toolbox in MATLAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.