We have developed an all-fiber 1,708 nm laser capable of damaging majority of the sebaceous glands in the dermis and thus may have potential applications in the treatment of conditions such as acne vulgaris whose pathophysiology involves disorders of sebaceous glands.
A power scalable thulium-doped fiber-amplifier-based supercontinuum (SC) laser covering the shortwave infrared region from 2 to 2.5 μm is demonstrated. The SC laser has an average power up to 25.7 W and a spectral density of >12 dBm/nm. Power scalability of the laser is proven by showing that the SC laser maintains a nearly constant spectral output, beam quality (M(2) measurements), and output spectral stability as the SC average power is scaled from 5 to 25.7 W average output power. We verify that the SC laser beam is nearly diffraction limited with an M(2)<1.2 for all power levels. Output spectral stability measurements with power scaling show a radiometric variability of <0.8% across the entire SC spectrum.
Field trial results of a 5 W all-fiber broadband supercontinuum (SC) laser covering the short-wave infrared (SWIR) wavelength bands from ~1.55 to 2.35 μm are presented. The SC laser is kept on a 12 story tower at the Wright Patterson Air Force Base and propagated through the atmosphere to a target 1.6 km away. Beam quality of the SC laser after propagating through 1.6 km is studied using a SWIR camera and show a near diffraction limited beam with an M(2) value of <1.3. The SC laser is used as the illumination source to perform spectral reflectance measurements of various samples at 1.6 km, and the results are seen to be in good agreement with in-lab measurements using a conventional lamp source. Spectral stability measurements are performed after atmospheric propagation through 1.6 km and show a relative variability of ~4%-8% across the spectrum depending on the atmospheric turbulence effects. Spectral stability measurements are also performed in-lab and show a relative variability of <0.6% across the spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.