Serials of polystyrene/SiO 2 Nano composites (PS/SiO 2) with different content of inorganic fillers were successfully prepared by the in situ bulk radical polymerization of styrene under microwave irradiation. The effect of the amount of Nano SiO 2 on the properties of the PS/SiO 2 Nanocomposites along with the average relative molecular masses (Mn, Mz and Mw) was investigated by thermal analysis and X-Ray Diffraction (XRD). Their structural model was proposed on the basis of the Optical Microscopy, FTIR (Fourier Transform Infrared) analysis, differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and X-Ray Diffraction (XRD). The dispersion of nanoparticles in Polystyrene is observed in the magnified image. The effect of microwave irradiation power on molecular weight of polystyrene was also studied. It was found that, the microwave assisted reaction needs less time as compare to conventional polymerization and found to be in between 10 to 15 min.
Molecular imprinting is an emerging technology which enables us to synthesize the materials with highly specific receptor sites towards the target molecules. Molecularly imprinted polymers (MIPs) are a class of highly cross-linked polymer that can bind certain target compound with high specificity. Such techniques have been progressively employed in a wide scope of applications such as development of various analytical techniques such as solid-phase extraction (SPE), liquid chromatography, capillary electro chromatography, binding assays and biosensors, mostly in bio-analytical areas. The aim of this review paper is to give a fundamental description of the molecular imprinted polymer and to give the reader an insight into the main developments are discussed, Particular emphasis will be placed on their role as affinity materials in separation science. Discussing first general aspects in MIP history and preparation and then dealing with various application aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.