Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza.
SUMMARY Ubiquitylation entails the concerted action of E1, E2 and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibited E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C-terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.
Stable retention of BRCA1/BARD1 complexes at sites of DNA damage is required for the proper response to DNA double-strand breaks (DSB). Here, we demonstrate that the BRCT domain of BARD1 is crucial for its retention through interaction with HP1. In response to DNA damage, BARD1 interacts with Lys9-dimethylated histone H3 (H3K9me2) in an ATM-dependent but RNF168-independent manner. This interaction is mediated primarily by HP1γ. A conserved HP1-binding motif in the BARD1 BRCT domain directly interacted with the chromoshadow domain of HP1 in vitro. Mutations in this motif (or simultaneous depletion of all three HP1 isoforms) disrupted retention of BARD1, BRCA1 and CtIP at DSB sites and allowed ectopic accumulation of RIF1, an effector of non-homologous end joining, at damaged loci in S phase. UNC0638, a small molecule inhibitor of histone lysine methyltransferase (HKMT), abolished retention and cooperated with the poly(ADP-ribose) polymerase inhibitor olaparib to block cancer cell growth. Taken together, our findings show how BARD1 promotes retention of the BRCA1/BARD1 complex at damaged DNA sites, and suggest the use of HKMT inhibitors to leverage the application of PARP inhibitors to treat breast cancer.
Ubiquitination of the αN-terminus of protein substrates has been reported sporadically over the past twenty years. However the identity of an enzyme responsible for this unique ubiquitin (Ub) modification has only recently been elucidated. We show the ubiquitin-conjugating enzyme (E2) Ube2w employs a novel mechanism to facilitate the specific ubiquitination of the α-amino group of its substrates that involves recognition of backbone atoms of intrinsically disordered N-termini. We present the NMR-based solution ensemble of full-length Ube2w that reveals a structural architecture unlike any other E2, in which its C-terminus is partly disordered and flexible to accommodate variable substrate N-termini. Flexibility of the substrate is critical for recognition by Ube2w and point mutations in, or removal of, the flexible C-terminus of Ube2w inhibits substrate binding and modification. Mechanistic insights reported here provide guiding principles for future efforts to define the N-terminal-Ubiquitome in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.