Despite a more than 20-year experience of therapeutic benefit, the relevant molecular and cellular targets of intravenous immunoglobulin (IVIg) in autoimmune disease remain unclear. Contrary to the prevailing theories of IVIg action in autoimmunity, we show that IVIg drives signaling through activating Fc gamma receptors (Fc gammaR) in the amelioration of mouse immune thrombocytopenic purpura (ITP). The actual administration of IVIg was unnecessary because as few as 10(5) IVIg-treated cells could, upon adoptive transfer, ameliorate ITP. IVIg did not interact with the inhibitory Fc gammaRIIB on the initiator cell, although Fc gammaRIIB does have a role in the late phase of IVIg action. Notably, only IVIg-treated CD11c+ dendritic cells could mediate these effects. We hypothesize that IVIg forms soluble immune complexes in vivo that prime dendritic-cell regulatory activity. In conclusion, the clinical effects of IVIg in ameliorating ITP seem to involve the acute interaction of IVIg with activating Fc gammaR on dendritic cells.
MicroRNAs (miRNAs) are single-stranded regulatory RNAs, frequently expressed as clusters. Previous studies have demonstrated that the six-miRNA cluster miR-17~92 has important roles in tissue development and cancers. However, the precise role of each miRNA in the cluster is unknown. Here we show that overexpression of miR-17 results in decreased cell adhesion, migration and proliferation. Transgenic mice overexpressing miR-17 showed overall growth retardation, smaller organs and greatly reduced haematopoietic cell lineages. We found that fibronectin and the fibronectin type-III domain containing 3A (FNDC3A) are two targets that have their expression repressed by miR-17, both in vitro and in transgenic mice. Several lines of evidence support the notion that miR-17 causes cellular defects through its repression of fibronectin expression. Our single miRNA expression assay may be evolved to allow the manipulation of individual miRNA functions in vitro and in vivo. We anticipate that this could serve as a model for studying gene regulation by miRNAs in the development of gene therapy.
Intravenous Ig (IVIg) mediates protection from the effects of immune thrombocytopenic purpura (ITP) as well as numerous other autoimmune states; however, the active antibodies within IVIg are unknown. There is some evidence that antibodies specific for a cell-associated antigen on erythrocytes are responsible, at least in part, for the therapeutic effect of IVIg in ITP. Yet whether an IVIg directed to a soluble antigen can likewise be beneficial in ITP or other autoimmune diseases is also unknown. A murine model of ITP was used to determine the effectiveness of IgG specific to soluble antigens in treating immune thrombocytopenic purpura. Mice experimentally treated with soluble OVA + anti-OVA versus mice treated with OVA conjugated to rbcs (OVA-rbcs) + anti-OVA were compared. In both situations, mice were protected from ITP. Both these experimental therapeutic regimes acted in a complement-independent fashion and both also blocked reticuloendothelial function. In contrast to OVA-rbcs + anti-OVA, soluble OVA + anti-OVA (as well as IVIg) did not have any effect on thrombocytopenia in mice lacking the inhibitory receptor FcgammaRIIB (FcgammaRIIB(-/-) mice). Similarly, antibodies reactive with the endogenous soluble antigens albumin and transferrin also ameliorated ITP in an FcgammaRIIB-dependent manner. Finally, broadening the significance of these experiments was the finding that anti-albumin was protective in a K/BxN serum-induced arthritis model. We conclude that IgG antibodies directed to soluble antigens ameliorated 2 disparate IVIg-treatable autoimmune diseases.
Q3G is a natural derivative of quercetin and is already widely used in various foods and drinks. Our results clearly demonstrated that Q3G exerts antiviral activity against ZIKV in both tissue culture and knockout mice, and that post-exposure in vivo treatment with Q3G could have a beneficial effect. In the future, Q3G should be tested in human cell lines (such as Huh-7, HeLa, or K048, a fetal brain neural stem cell line) to provide further data supporting its potential efficacy in humans; in addition, live viral loads or viremia should be tested in treated animals to supplement the survival results observed in this study. Although the treatment regimens will need to be further optimized (i.e., dosage, frequency of treatment, and administration routes), our results support the results of Q3G efficacy studies in nonhuman primates against ZIKV infection. Further studies will also be needed to investigate the mechanism of Q3G antiviral action, in order to obtain valuable insights into the design of novel targets for antiviral therapeutics in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.