SUMMARYThis paper presents a novel method to determine the workspace of parallel manipulators using a variant of the Firefly Algorithm, which is one of the emerging techniques in swarm artificial intelligence. The workspace is defined as a set of all the coordinates in the search space that are accessible by the parallel manipulator end effector. The workspace formulation of the parallel manipulator considered in this paper has actuated and passive joint displacements which values are limited by their physical constraints. A special fitness function that discriminates between accessible and inaccessible coordinates is formulated based on the joint limitations. By finding these coordinates using the proposed Firefly Algorithm, the workspace of the manipulator can be constructed. The proposed method is an easy-to-implement alternative solution to the current numerical methods for workspace determination. The method consists of two stages of operation. The first stage maps the workspace to find the initial results with a space filling approach, in which a number of coordinates in the workspace are identified. The second stage refines the results with a boundary detection approach which focuses on the mapping of the boundaries of the workspace. The method is illustrated by its application to determine the 2D, 3D, and 6D workspaces of a Gough--Stewart Platform manipulator. Furthermore, the method is compared with a more rigorous interval analysis method in terms of computational cost and accuracy.
This paper proposes a map free lane following solution based on low-cost 2D laser scanners for Autonomous Service Vehicle to fill the gap between future driverless car and the lane keeping assistant. The applications of autonomous service vehicle include feeder bus in a local residential area, shuttle bus in a park or playground, sprinkler car, sweeper car, and transporter in airport or container terminal. As autonomous service vehicle is running only in a limited area and its speed is slow compared to normal vehicles, we can further simplify the problem regardless of the issues of road infrastructure detection/communication and V2I maps which prevent the popularization of driverless car, and to propose a unique map free solution. The features of our approach include: 1) an innovative configuration for two 2D laser scanners to detect the lane with sharp curve; 2) a fast and accurate lane detection algorithm based on 2D laser's raw date directly; 3) a reliable and smooth path planning based on local lane fitting and prediction; and 4) a self-built unique drive-by-wire system for electronic car. We successfully tested our vehicle with autonomous driving in the testing field. The experiments show that the vehicle's trajectory matched the planned path accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.