We performed a combined secondary electron yield (SEY) and x-ray photoelectron spectroscopy study as a function of the electron dose and energy on a Cu technical surface representative of the LHC accelerator walls. The electron bombardment is accompanied by a clear chemical modification, indicating an increased graphitization as the SEY decreases. The decrease in the SEY is also found to depend significantly on the kinetic energy of the primary electrons. When low-energy primary electrons are employed (E≤20 eV), the reduction of the SEY is slower and smaller in magnitude than when higher-energy electrons are used. Consequences of this observation are discussed mainly for their relevance on the commissioning scenario for the LHC in operation at CERN (Geneva), but are expected to be of interest for other research fields.
EuroCirCol is a conceptual design study of a post-LHC, Future Circular Hadron Collider (FCC-hh) which aims to expand the current energy and luminosity frontiers. The vacuum chamber of this 100 TeV, 100 km collider, will have to cope with unprecedented levels of synchrotron radiation linear power for proton colliders, 160 times higher than in the LHC for baseline parameters, releasing consequently much larger amounts of gas into the system. At the same time, it will be dealing with a tighter magnet aperture. In order to reach a good vacuum level, it has been necessary to find solutions beyond the particle colliders' state of art. This paper proposes a design of a novel beam screen, the element responsible for absorbing the emitted power. It is intended to overcome the drawbacks derived from the stronger synchrotron radiation while allowing at the same time a good beam quality.
In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL) spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials examined of WL irradiation and /or ion sputtering, simulating the SR and ion bombardment expected in the LHC, were investigated. The studied samples exhibited significant modifications, in terms of electron emission, when exposed to the WL spectrum from the BESSY Toroidal Grating Monochromator beam line. Moreover, annealing and ion bombardment also induce substantial changes to the surface thereby indicating that such surfaces would not have a constant electron emission during machine operation. Such characteristics may be an important issue to define the surface properties of the LHC vacuum chamber material and are presented in detail for the various samples analyzed. It should be noted that all the measurements presented here were recorded at room temperature, whereas the majority of the LHC vacuum system will be maintained at temperatures below 20 K. The results cannot therefore be directly applied to these sections of the machine until measurements at cryogenic temperatures, i.e., in the presence of cryosorbed gas layers, are obtained. However, these results are directly relevant to all the warm regions of the LHC vacuum system, such as the experimental vacuum chambers and warm element vacuum chambers in the insertion regions. [S1098-4402(99)
Core-excitation of water ice releases many different molecules and ions in the gas phase. Studying these desorbed species and the underlying mechanisms can provide useful information on the effects of X-ray irradiation in ice. We report a detailed study of the X-ray induced desorption of a number of neutral, cationic and anionic species from amorphous solid water. We discuss the desorption mechanisms, and the relative contributions of Auger and secondary electrons (X-ray induced Electron Stimulated Desorption) and initial excitation (direct desorption) as well as the role of photochemistry. Anions are shown to desorb not just through processes linked with secondary electrons but also through direct dissociation of the core-excited molecule. The desorption spectra of oxygen ions (O + , OH + , H2O + , O − , OH − ) give a new perspective on their previously reported very low desorption yields for most types of irradiation of water, showing that they mostly originate from the dissociation of photoproducts such as H2O2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.