Pumps have a wide range of applications. Methods for fault detection of motors are increasingly being used for pumps. In the context of this paper, a test bench is built to investigate circulation pumps for faults. As a use case, the fault of impeller clogging was first measured and then examined with the help of motor current signature analysis. It can be seen that there are four frequencies at which there is an increase in amplitude in case of a fault. The sidebands around the supply frequency are in particular focus. The clogging of three and four of a total of seven channels leads to the highest amplitudes at the fault frequencies. The efficiency is reduced by 9 to 15% in case of faulty operation. These results indicate that the implementation of fault detection algorithms on the pump electronics represents added value for the pump operator. Furthermore, the results can be transferred to other applications.
Motor current signature analysis (MCSA) for fault detection has found widespread application, especially for induction motors (IM). The basis of MCSA is the evaluation of a motor's current. This analysis is now also used for other motor types and can be used to detect faults of the coupled load. The purpose of this paper is to examine whether MCSA can be used to detect faults in a wet-rotor pump. A total of three faults are examined. The results show that, compared to a healthy pump, all faults could be detected. However, a detailed analysis of frequency components has to be carried out to differentiate the faults. A circulation pump with a maximum power consumption of 1.1 kW was used as the test item.
The growing number of variable speed drives (VSDs) in industry has an impact on the future development of condition monitoring methods. In research, more and more attention is being paid to condition monitoring based on motor current evaluation. However, there are currently only a few contributions to current-based pump diagnosis. In this paper, two current-based methods for the detection of bearing defects, impeller clogging, and cracked impellers are presented. The first approach, load point-dependent fault indicator analysis (LoPoFIA), is an approach that was derived from motor current signature analysis (MCSA). Compared to MCSA, the novelty of LoPoFIA is that only amplitudes at typical fault frequencies in the current spectrum are considered as a function of the hydraulic load point. The second approach is advanced transient current signature analysis (ATCSA), which represents a time-frequency analysis of a current signal during start-up. According to the literature, ATCSA is mainly used for motor diagnosis. As a test item, a VSD-driven circulation pump was measured in a pump test bench. Compared to MCSA, both LoPoFIA and ATCSA showed improvements in terms of minimizing false alarms. However, LoPoFIA simplifies the separation of bearing defects and impeller defects, as impeller defects especially influence higher flow ranges. Compared to LoPoFIA, ATCSA represents a more efficient method in terms of minimizing measurement effort. In summary, both LoPoFIA and ATCSA provide important insights into the behavior of faulty pumps and can be advantageous compared to MCSA in terms of false alarms and fault separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.