A superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions is presented. Quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting change in the hybridization of the QD states with the superconducting contacts. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of the switching current with magnetic flux is achieved when both QD junctions are in the 'on' or 'off' state. In particular, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled pi-junctions; that is, the sign of the current-phase relation across the CNT junctions can be tuned with a gate voltage. The CNT-SQUIDs are sensitive local magnetometers, which are very promising for the study of magnetization reversal of an individual magnetic particle or molecule placed on one of the two CNT Josephson junctions.
A metallic electrode connected to electron reservoirs by tunnel junctions has a series of charge states corresponding to the number of excess electrons in the electrode. In contrast with the charge state of an atomic or molecular ion, the charge states of such an ""islandÏÏ involve a macroscopic number of conduction electrons of the island. Island charge states bear some resemblance with the photon number states of the cavity in cavity QED, the phase conjugate to the number of electrons being analogous to the phase of the Ðeld in the cavity. For a normal island, charge states decay irreversibly into charge states of lower energies. However, the ground state of a superconducting island connected to superconducting reservoirs can be a coherent superposition of charge states di †ering by two electrons (i.e. a Cooper pair). We describe an experiment in which this Josephson e †ect involving only one Cooper pair is measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.