Background Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave. Methods This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training. Results We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0–14.0) and the median awareness score was 29.6 (IQR = 26.6–32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a ’great-extent-of-confidence’ in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors. Interpretation There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type.
The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has previously never been identified with humans, thereby creating devastation in public health. The need for an effective vaccine to curb this pandemic cannot be overemphasized. In view of this, we designed a subcomponent antigenic peptide vaccine targeting the N-terminal (NT) and C-terminal (CT) RNA binding domains of the nucleocapsid protein that aid in viral replication. Promising antigenic B cell and T cell epitopes were predicted using computational pipelines. The peptides “RIRGGDGKMKDL” and “AFGRRGPEQTQGNFG” were the B cell linear epitopes with good antigenic index and nonallergenic property. Two CD8+ and Three CD4+ T cell epitopes were also selected considering their safe immunogenic profiling such as allergenicity, antigen level conservancy, antigenicity, peptide toxicity, and putative restrictions to a number of MHC-I and MHC-II alleles. With these selected epitopes, a nonallergenic chimeric peptide vaccine incapable of inducing a type II hypersensitivity reaction was constructed. The molecular interaction between the Toll-like receptor-5 (TLR5) which was triggered by the vaccine was analyzed by molecular docking and scrutinized using dynamics simulation. Finally, in silico cloning was performed to ensure the expression and translation efficiency of the vaccine, utilizing the pET-28a vector. This research, therefore, provides a guide for experimental investigation and validation.
The application of bioinformatics to vaccine research and drug discovery has never been so essential in the fight against infectious diseases. The greatest combat of the 21st century against a debilitating disease agent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus discovered in Wuhan, China, December 2019, has piqued an unprecedented usage of bioinformatics tools in deciphering the molecular characterizations of infectious pathogens. With the viral genome data of SARS-COV-2 been made available barely weeks after the reported outbreak, bioinformatics platforms have become an all-time critical tool to gain time in the fight against the disease pandemic. Before the outbreak, different platforms have been developed to explore antigenic epitopes, predict peptide-protein docking and antibody structures, and simulate antigen-antibody reactions and lots more. However, the advent of the pandemic witnessed an upsurge in the application of these pipelines with the development of newer ones such as the Coronavirus Explorer in the development of efficacious vaccines, drug repurposing, and/or discovery. In this review, we have explored the various pipelines available for use, their relevance, and limitations in the timely development of useful therapeutic candidates from genomic data knowledge to clinical therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.