BackgroundA considerable challenge in quantification of the antimalarial piperaquine in plasma is carryover of analyte signal between assays. Current intensive pharmacokinetic studies often rely on the merging of venous and capillary sampling. Drug levels in capillary plasma may be different from those in venous plasma, Thus, correlation between capillary and venous drug levels needs to be established.
MethodsLiquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to develop the method. Piperaquine was measured in 205 pairs of capillary and venous plasma samples collected simultaneously at �24hr post dose in children, pregnant women and nonpregnant women receiving dihydroartemisinin-piperaquine as malaria chemoprevention. Standard three-dose regimen over three days applied to all participants with three 40mg dihydroartemisinin/320mg PQ tablets per dose for adults and weight-based dose for children. Correlation analysis was performed using the program Stata® SE12.1. Linear regression models were built using concentrations or logarithm transformed concentrations and the final models were selected based on maximal coefficient of determination (R 2 ) and visual check.
ResultsAn LC-MS/MS method was developed and validated, utilizing methanol as a protein precipitation agent, a Gemini C 18 column (50x2.0mm, 5μm) eluted with basic mobile phase solvents (ammonium hydroxide as the additive), and ESI + as the ion source. This method had
It is well known that ion-pairing reagents cause ion suppression in LC-MS/MS methods. Here, we report that trichloroacetic acid increases the MS signal of tobramycin. To support studies of an in vitro pharmacokinetic/pharmacodynamic simulator for bacterial biofilms, an LC-MS/MS method for determination of tobramycin in M9 media was developed. Aliquots of 25 μL M9 media samples were mixed with the internal standard (IS) tobramycin-d5 (5 µg/mL, 25 µL) and 200 µL 2.5% trichloroacetic acid. The mixture (5 µL) was directly injected onto a PFP column (2.0 × 50 mm, 3 µm) eluted with water containing 20 mM ammonium formate and 0.14% trifluoroacetic acid and acetonitrile containing 0.1% trifluoroacetic acid in a gradient mode. ESI+ and MRM with ion m/z 468 → 324 for tobramycin and m/z 473 → 327 for the IS were used for quantification. The calibration curve concentration range was 50–25000 ng/mL. Matrix effect from M9 media was not significant when compared with injection solvents, but signal enhancement by trichloroacetic acid was significant (∼3 fold). The method is simple, fast, and reliable. Using the method, the in vitro PK/PD model was tested with one bolus dose of tobramycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.