Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compromises the ability of military forces to fulfill missions. At the beginning of May 2020, 22 out of 70 Belgian soldiers deployed to a military education and training center in Maradi, Niger, developed mild COVID-19 compatible symptoms. Immediately upon their return to Belgium, and two weeks later, all seventy soldiers were tested for SARS-CoV-2 RNA (RT-qPCR) and antibodies (two immunoassays). Nine soldiers had at least one positive COVID-19 diagnostic test result. Five of them exhibited COVID-19 symptoms (mainly anosmia, ageusia, and fever), while four were asymptomatic. In four soldiers, SARS-CoV-2 viral load was detected and the genomes were sequenced. Conventional and genomic epidemiological data suggest that these genomes have an African most recent common ancestor and that the Belgian military service men were infected through contact with locals. The medical military command implemented testing of all Belgian soldiers for SARS-CoV-2 viral load and antibodies, two to three days before their departure on a mission abroad or on the high seas, and for specific missions immediately upon their return in Belgium. Some military operational settings (e.g., training camps in austere environments and ships) were also equipped with mobile infectious disease (COVID-19) testing capacity.
From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information. A proposal to harmonize reporting of test results was drafted by the National Reference Centre (NRC) UZ/KU Leuven, distinguishing four categories of positivity based on RNA copies/mL. Pre-quantified control material was shipped to 124 laboratories with instructions to setup a standard curve to define thresholds per assay. For each assay, the mean Ct value and corresponding standard deviation was calculated per target gene, for the three concentrations (107, 105 and 103 copies/mL) that determine the classification. The results of 17 assays are summarized. This harmonization effort allowed to ensure that all Belgian laboratories would report positive PCR results in the same semi-quantitative manner to clinicians and to the national database which feeds contact tracing interventions.
Background Transplant recipients are at risk of pulmonary nocardiosis, a life-threatening opportunistic infection caused by Nocardia species. Given the limitations of conventional diagnostic techniques (i.e., microscopy and culture), a polymerase chain reaction (PCR)-based assay was developed to detect Nocardia spp. on clinical samples. While this test is increasingly being used by transplant physicians, its performance characteristics are not well documented. We evaluated the performance characteristics of this test on bronchoalveolar lavage (BAL) fluid samples from lung transplant recipients (LTRs). Methods We prospectively included all BAL samples from LTRs undergoing bronchoscopy at our institution between December 2016 and June 2017 (either surveillance or clinically-indicated bronchoscopies). Presence of microbial pathogens was assessed using techniques available locally (including microscopy and 10-day culture for Nocardia ). BAL samples were also sent to the French Nocardiosis Observatory (Lyon, France) for the Nocardia PCR-based assay. Transplant physicians and patients were blinded to the Nocardia PCR results. Results We included 29 BAL samples from 21 patients (18 surveillance and 11 clinically-indicated bronchoscopies). Nocardiosis was not diagnosed in any of these patients by conventional techniques. However, Nocardia PCR was positive in five BAL samples from five of the patients (24%, 95% confidence interval: 11–45%); four were asymptomatic and undergoing surveillance bronchoscopy, and one was symptomatic and was later diagnosed with influenza virus infection. None of the five PCR-positive patients died or were diagnosed with nocardiosis during the median follow-up of 21 months after the index bronchoscopy (range: 20–23 months). Conclusions In this prospective study, Nocardia PCR was positive on BAL fluid from one fourth of the LTRs. Nocardia PCR-based assays should be used with caution on respiratory samples from LTRs because of the possible detection of airway colonization using this technique. Larger studies are required to determine the usefulness of the Nocardia PCR-based assay in transplant recipients.
More than a year after the first identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of the 2019 coronavirus disease (COVID-19) in China, the emergence and spread of genomic variants of this virus through travel raise concerns regarding the introduction of lineages in previously unaffected regions, requiring adequate containment strategies. Concomitantly, such introductions fuel worries about a possible increase in transmissibility and disease severity, as well as a possible decrease in vaccine efficacy. Military personnel are frequently deployed on missions around the world. As part of a COVID-19 risk mitigation strategy, Belgian Armed Forces that engaged in missions and operations abroad were screened (7683 RT-qPCR tests), pre- and post-mission, for the presence of SARS-CoV-2, including the identification of viral lineages. Nine distinct viral genotypes were identified in soldiers returning from operations in Niger, the Democratic Republic of the Congo, Afghanistan, and Mali. The SARS-CoV-2 variants belonged to major clades 19B, 20A, and 20B (Nextstrain nomenclature), and included “variant of interest” B.1.525, “variant under monitoring” A.27, as well as lineages B.1.214, B.1, B.1.1.254, and A (pangolin nomenclature), some of which are internationally monitored due to the specific mutations they harbor. Through contact tracing and phylogenetic analysis, we show that isolation and testing policies implemented by the Belgian military command appear to have been successful in containing the influx and transmission of these distinct SARS-CoV-2 variants into military and civilian populations.
BackgroundRHCE*ceEK is a rare RH allele mostly encountered in people of African descent. This allele is defined by four single nucleotide substitutions: c.48G>C, c.712A>G, c.787A>G and c.800T>A. Until now, it has only been reported to segregate with either RHD*01N.01 or RHD*DAR1.00.Materials and MethodsBlood samples were drawn from a 32‐year‐old Tutsi pregnant woman during an antenatal visit in order to perform her type and screen. To further investigate the results found in the patient, a family study was conducted. Standard haemagglutination methods were used to investigate the subjects’ red blood cells and plasma. Molecular workup on RHD and RHCE genes was carried out by DNA microarray, real‐time PCR and DNA sequencing techniques.ResultsThe patient was phenotyped as group B, D+C−E−c+e+, Hr−. A complex mixture of anti‐E, anti‐c, anti‐Hr and anti‐hrS was detected in her plasma. She was found to carry a normal RHD gene, a conventional RHCE*ceEK allele and an alternative RHCE*ceEK allele (RHCE*ceEK without c.48G>C). The family study showed that the conventional RHCE*ceEK and the alternative RHCE*ceEK alleles were associated with a RHD*01 allele and a RHD*01N.01 allele, respectively. Molecular analysis performed in the proband’s mother showed a novel RHCE*ce variant allele on a RHCE*ceS‐like background (RHCE*ceS with c.609G>A).ConclusionsThis case study brought out new associations between RHD and RHCE alleles encoding the rare Hr− phenotype: the conventional RHCE*ceEK allele linked to the RHD*01 allele and an alternative RHCE*ceEK allele associated with the RHD*01N.01 allele. A novel RHCE*ce variant (RHCE*ceS with c.609G>A) was also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.