For the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure. We now demonstrate for the first time the 3D arrangement of vital cells by LaBP as multicellular grafts analogous to native archetype and the formation of tissue by these cells. For this purpose, fibroblasts and keratinocytes embedded in collagen were printed in 3D as a simple example for skin tissue. To study cell functions and tissue formation process in 3D, different characteristics, such as cell localisation and proliferation were investigated. We further analysed the formation of adhering and gap junctions, which are fundamental for tissue morphogenesis and cohesion. In this study, it was demonstrated that LaBP is an outstanding tool for the generation of multicellular 3D constructs mimicking tissue functions. These findings are promising for the realisation of 3D in vitro models and tissue substitutes for many applications in tissue engineering.
Wound healing is a complex orchestration of processes involving cell proliferation, migration, differentiation, anabolism, and catabolism in order to restore skin continuity. Within these processes, elements such as metallic ions are involved due to their implications in cell behavior and enzymatic activity regulation. This study analyzed the kinetics of zinc, iron, copper and magnesium concentrations in a full thickness open wound rat model over 14 days. We made wounds with a diameter of 6 mm on the back of Lewis rats and let them heal naturally prior to analysis by histology and inductively coupled plasma mass spectrometry analysis. Histological and immunofluorescence analysis confirmed an inflammation phase until 7 days, epithelial proliferation phase from 16 h to 10 days, and remodeling phase from 7 days onward. These defined phases were correlated with the measured metal element kinetics. Zinc concentrations showed an inverted parabolic progression between 30.4 and a maximum of 39.9 μg/g dry weight. Magnesium values had a similar pattern between 283 and 499 μg/g dry weight. Copper concentrations, on the other hand, followed an inverted sigmoid trend with a decrease from 9.8 to 1.5 μg/g dry weight. Iron had a slight decrease in concentration for 24 h followed by an increase to a maximum of 466 μg/g dry weight. In conclusion, zinc, iron, and copper, even though differing in their total mass within the wound, exhibited concentration curve transitions at day 3. Interestingly, this time point correlates with the maximum proliferating keratinocyte rate during the proliferation phase. Electronic supplementary material The online version of this article (10.1007/s12011-018-1600-y) contains supplementary material, which is available to authorized users.
Lung surfactants are used for reducing alveolar surface tension in preterm infants to ease breathing. Phospholipid films with surfactant proteins regulate the activity of alveolar macrophages and reduce inflammation. Aberrant skin wound healing is characterized by persistent inflammation. The aim of the study was to investigate if lung surfactant can promote wound healing. Preclinical wound models, e.g. cell scratch assays and full-thickness excisional wounds in mice, and a randomized, phase I clinical trial in healthy human volunteers using a suction blister model were used to study the effect of the commercially available bovine lung surfactant on skin wound repair. Lung surfactant increased migration of keratinocytes in a concentration-dependent manner with no effect on fibroblasts. Significantly reduced expression levels were found for pro-inflammatory and pro-fibrotic genes in murine wounds. Because of these beneficial effects in preclinical experiments, a clinical phase I study was initiated to monitor safety and tolerability of surfactant when applied topically onto human wounds and normal skin. No adverse effects were observed. Subepidermal wounds healed significantly faster with surfactant compared to control. our study provides lung surfactant as a strong candidate for innovative treatment of chronic skin wounds and as additive for treatment of burn wounds to reduce inflammation and prevent excessive scarring.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.