A novel organometallic synthetic method has been developed for the preparation of crystalline ZnO nanoparticles of controlled size and shape. Isotropic nanoparticles with a mean size between 3 and 6 nm and nanorods with a mean diameter of 3–4 nm and length up to 120 nm have been obtained in this way. This synthetic method takes advantage of the exothermic reaction of the precursor Zn(c‐C6H11)2 (1) toward moisture and air and involves the presence of long‐alkyl‐chain amines as stabilizing ligands. The influence of the different experimental parameters (concentration, solvent, nature of the ligand, time, and temperature) on the size and shape of the ZnO nanoparticles has been studied, together with the mechanism of their formation, by NMR spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The nanoparticles prepared in this way can be dissolved in most of the common organic solvents, forming colloidal solutions. The surface state of the nanoparticles as well as the possibility of forming luminescent solutions from which regular monolayers can be deposited are also reported.
Ruthenium nanoparticles of controlled size have been prepared by decomposition of the organometallic precursor Ru(cod)(cot) (cod = 1,5‐cyclooctadiene, cot = 1,3,5‐cyclooctatriene) under an H2 atmosphere in either a pure alcohol or an alcohol/THF mixture as solvent and in the absence of further stabilizer. The particles were characterized by transmission electron microscopy (TEM), high‐resolution electron microscopy (HREM), X‐ray diffraction (XRD), wide‐angle X‐ray scattering (WAXS), and X‐ray photoelectron spectroscopy (XPS). The colloidal solutions are stable for long periods of time, in some cases longer than one year. TEM images reveal in most cases the presence of polycrystalline sponge‐like particles of regular spherical shape and homogeneous size or, in some cases, the presence of isolated and well‐dispersed monocrystalline particles, depending upon the alkyl chain length of the alcohol used. In all cases the size distributions are relatively narrow. WAXS and XRD analyses indicate the exclusive presence of hexagonal close‐packed (hcp) ruthenium in these materials. The size of the particles can be controlled by adjusting the reaction temperature or the composition of the solvent mixture. In case of MeOH/THF mixtures, a linear correlation was established between the solvent composition and the size of the particles in the range of 4–85 nm. In the absence of stirring, small individual monocrystalline Ru particles are formed inside superstructures that assemble in some cases into monolayers. Finally, these materials are promising in catalytic hydrogenation of arenes under mild conditions.
a b s t r a c tThe electrochemical determination of Hg(II) at trace level using gold nanoparticles-modified glassy carbon (AuNPs-GC) electrodes is described. Starting from HAuCl 4 in NaNO 3 , gold nanoparticles (AuNPs) were deposited onto Glassy Carbon (GC) electrodes using Cyclic Voltammetry (CV). Different deposits were obtained by varying the global charge consumed during the whole electroreduction step, depending on the number of cyclic potential scans (N). AuNPs were characterized as a function of the charge using both CV in H 2 SO 4 and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). The AuNPs-GC electrodes were then applied to determine low Hg(II) concentrations using Square Wave Anodic Stripping Voltammetry (SWASV). The AuNPs-GC electrodes provided significantly improved performances in Hg(II) determination compared to unmodified GC and bare Au electrodes. It was shown that the physico-chemical properties of the deposits are correlated to the performances of the AuNPs-GC electrode with respect to Hg(II) assay. The best results were obtained for four electrodeposition cyclic scans, where small-sized particles (36 ± 13 nm) with high density (73 particles lm À2 ) were obtained. Under these conditions, a linearity range from 0.64 to 4.00 nM and a limit of detection of 0.42 nM were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.