Spermines are naturally abundant
polyamines that partially condense
nucleic acids and exhibit the proton-sponge effect in an acidic environment.
However, spermines show a limited efficiency for transfecting nucleic
acids because of their low molecular weight. Therefore, spermines
need to be modified to be used as nonviral vectors for nucleic acids.
Here, we synthesized linear bisspermine as well as a linear and dendritic
tetraspermine with different molecular architectures. These oligospermines
were self-assembled into polyplexes with siRNA. The structure–activity
relationship of the oligospermines was evaluated in terms of their
efficiency for delivering siRNA into a nonsmall cell lung carcinoma
cell line. Oligospermines displayed minimal cytotoxicity but efficient
siRNA condensation and showed better stability against polyanions
than polyethylenimine. The morphology of the polyplexes was strongly
affected by the oligospermine architecture. Linear tetraspermine/siRNA
polyplexes showed the best gene-silencing efficiency among the oligospermines
tested at both the mRNA and protein expression levels, indicating
the most favorable structure for siRNA delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.