Severe sepsis and septic shock are the primary causes of multiple organ dysfunction syndrome (MODS), which is the most frequent cause of death in intensive care unit patients. Many water-soluble mediators with pro- and anti-inflammatory action such as TNF, IL-6, IL-8, and IL-10 play a strategic role in septic syndrome. In intensive care medicine, blocking any one mediator has not led to a measurable outcome improvement in patients with sepsis. CRRT is a continuously acting therapy, which removes in a nonselective way pro- and anti-inflammatory mediators; "the peak concentration hypothesis" is the concept of cutting peaks of soluble mediators through continuous hemofiltration. Furthermore, there is evidence of increased efficacy of high-volume hemofiltration compared to conventional CVVH, and other blood purification techniques that utilize large-pore membranes or sorbent plasmafiltration are conceptually interesting.
The evaluation and initial management of patients with acute kidney injury (AKI) should include: (1) an assessment of the contributing causes of the kidney injury, (2) an assessment of the clinical course including comorbidities, (3) a careful assessment of volume status, and (4) the institution of appropriate therapeutic measures designed to reverse or prevent worsening of functional or structural kidney abnormalities. The initial assessment of patients with AKI classically includes the differentiation between prerenal, renal, and postrenal causes. The differentiation between so-called "prerenal" and "renal" causes is more difficult, especially because renal hypoperfusion may coexist with any stage of AKI. Using a modified Delphi approach, the multidisciplinary international working group, generated a set of testable research questions. Key questions included the following: Is there a difference in prognosis between volume-responsive and volume-unresponsive AKI? Are there biomarkers whose patterns (dynamic changes) predict the severity and recovery of AKI (maximal stage of AKI, need for RRT, renal recovery, mortality) and guide therapy? What is the best biomarker to assess prospectively whether AKI is volume responsive? What is the best biomarker to assess the optimal volume status in AKI patients? In evaluating the current literature and ongoing studies, it was thought that the answers to the questions posed herein would improve the understanding of AKI, and ultimately patient outcomes.
The uremic syndrome is characterized by an accumulation of uremic toxins due to inadequate kidney function. The European Uremic Toxin (EUTox) Work Group has listed 90 compounds considered to be uremic toxins. Sixty-eight have a molecular weight less than 500 Da, 12 exceed 12,000 Da, and 10 have a molecular weight between 500 and 12,000 Da. Twenty-five solutes (28%) are protein bound. The kinetics of urea removal is not representative of other molecules such as protein-bound solutes or the middle molecules, making Kt/V misleading. Clearances of urea, even in well-dialyzed patients, amount to only one-sixth of physiological clearance. In contrast to native kidney function, the removal of uremic toxins in dialysis is achieved by a one-step membrane-based process and is intermittent. The resulting sawtooth plasma concentrations of uremic toxins contrast with the continuous function of native kidneys, which provides constant solute clearances and mass removal rates. Our increasing knowledge of uremic toxins will help guide future treatment strategies to remove them.
Summary We report the utility of an enzymatic point of care system for estimation of plasma creatinine concentration in critically ill patients with acute kidney injury. Multiple measurements were obtained from a heterogenous population admitted to a multi‐disciplinary intensive care unit. The acute kidney injury network guidelines were used to identify and stratify patients based on the creatinine concentration. Central laboratory values were used as comparators to assess the precision and bias of the system. Overall, point of care measurements correlated well with central pathology results (R2 = 0.991, p < 0.001), although there tended to be a small negative bias in patients with acute kidney injury (3 μmol.l−1). The accuracy of point of care measurement is within clinically acceptable limits and given the much shorter turn around time can be used to identify and monitor patients with acute kidney injury in the critical care environment.
IntroductionAcute hydrothorax is an uncommon but a well-recognized complication of peritoneal dialysis. No single test is definitive for diagnosis. Although it is not a life-threatening condition, hydrothorax often requires abandonment of peritoneal dialysis. Delay in diagnosis can lead to worsening of the clinical status.Case PresentationA 33-year-old Caucasian woman with lupus, who was successfully treated with temporary peritoneal dialysis 17 years previously, presented with acute dyspnea and a right pleural effusion after recommencing peritoneal dialysis. Investigations eliminated infective, cardiac, and primary respiratory causes. Peritoneal dialysis-related hydrothorax was suggested by biochemistry, and a pleuroperitoneal leak was definitively confirmed by using a Tc-99 m DTPA (diethylene triamine penta-acetic acid) scintigraphy scan. Subsequently, she underwent video-assisted thoracoscopy-guided talc pleurodesis and was able to return successfully to peritoneal dialysis.ConclusionAlthough our case is not the first report that describes the occurrence of acute hydrothorax in peritoneal dialysis, it is an important condition to recognize for the wider general medical community. Furthermore, this case demonstrates that peritoneal dialysis can be continued with a hydrothorax, provided the underlying cause can be corrected. We review the literature pertaining to the utility and reliability of different diagnostic approaches to hydrothorax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.