Structural reliability methods aim at computing the probability of failure of systems with respect to some prescribed performance functions. In modern engineering such functions usually resort to running an expensive-to-evaluate computational model (e.g. a finite element model). In this respect simulation methods, which may require 10 3−6 runs cannot be used directly. Surrogate models such as quadratic response surfaces, polynomial chaos expansions or kriging (which are built from a limited number of runs of the original model) are then introduced as a substitute of the original model to cope with the computational cost. In practice it is almost impossible to quantify the error made by this substitution though. In this paper we propose to use a kriging surrogate of the performance function as a means to build a quasi-optimal importance sampling density. The probability of failure is eventually obtained as the product of an augmented probability computed by substituting the meta-model for the original performance function and a correction term which ensures that there is no bias in the estimation even if the meta-model is not fully accurate. The approach is applied to analytical and finite element reliability problems and proves efficient up to 100 random variables.
20 pages, 6 figures, 5 tables. Preprint submitted to Springer-VerlagInternational audienceThe aim of the present paper is to develop a strategy for solving reliability-based design optimization (RBDO) problems that remains applicable when the performance models are expensive to evaluate. Starting with the premise that simulation-based approaches are not affordable for such problems, and that the most-probable-failure-point-based approaches do not permit to quantify the error on the estimation of the failure probability, an approach based on both metamodels and advanced simulation techniques is explored. The kriging metamodeling technique is chosen in order to surrogate the performance functions because it allows one to genuinely quantify the surrogate error. The surrogate error onto the limit-state surfaces is propagated to the failure probabilities estimates in order to provide an empirical error measure. This error is then sequentially reduced by means of a population-based adaptive refinement technique until the kriging surrogates are accurate enough for reliability analysis. This original refinement strategy makes it possible to add several observations in the design of experiments at the same time. Reliability and reliability sensitivity analyses are performed by means of the subset simulation technique for the sake of numerical efficiency. The adaptive surrogate-based strategy for reliability estimation is finally involved into a classical gradient-based optimization algorithm in order to solve the RBDO problem. The kriging surrogates are built in a so-called augmented reliability space thus making them reusable from one nested RBDO iteration to the other. The strategy is compared to other approaches available in the literature on three academic examples in the field of structural mechanics
Reliability sensitivity analysis aims at studying the influence of the parameters in the probabilistic model onto the probability of failure of a given system. Such an influence may either be quantified on a given range of values of the parameters of interest using a parametric analysis, or only locally by means of its partial derivatives. This paper is concerned with the latter approach when the limit-state function involves the output of an expensive-to-evaluate computational model. In order to reduce the computational cost it is proposed to compute the failure probability by means of the recently proposed meta-model-based importance sampling method. This method resorts to the adaptive construction of a Kriging meta-model which emulates the limit-state function. Then, instead of using this meta-model as a surrogate for computing the probability of failure, its probabilistic nature is used in order to build an quasi-optimal instrumental density function for accurately computing the actual failure probability through importance sampling. The proposed estimator of the failure probability recasts as a product of two terms. The augmented failure probability is estimated using the emulator only, while the correction factor is estimated using both the actual limit-state function and its emulator in order to quantify the substitution error. This estimator is then differentiated by means of the score function approach which enables the estimation of the gradient of the failure probability without any additional call to the limit-state function (nor its Kriging emulator). The approach is validated on three structural reliability examples.
In the field of structural reliability, the Monte-Carlo estimator is considered as the reference probability estimator. However, it is still untractable for real engineering cases since it requires a high number of runs of the model. In order to reduce the number of computer experiments, many other approaches known as reliability methods have been proposed. A certain approach consists in replacing the original experiment by a surrogate which is much faster to evaluate. Nevertheless, it is often difficult (or even impossible) to quantify the error made by this substitution. In this paper an alternative approach is developed. It takes advantage of the kriging meta-modeling and importance sampling techniques. The proposed alternative estimator is finally applied to a finite element based structural reliability analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.