Gaussian processes (GPs) provide a mathematically elegant framework for Bayesian inference and they can offer principled uncertainty estimates for a large range of problems. For example, if we consider certain regression problems with Gaussian likelihoods, a GP model enjoys a posterior in closed form. However, identifying the posterior GP scales cubically with the number of training examples and furthermore requires to store all training examples in memory. In order to overcome these practical obstacles, sparse GPs have been proposed that approximate the true posterior GP with a set of pseudo-training examples (a.k.a. inducing inputs or inducing points). Importantly, the number of pseudo-training examples is user-defined and enables control over computational and memory complexity. In the general case, sparse GPs do not enjoy closed-form solutions and one has to resort to approximate inference. In this context, a convenient choice for approximate inference is variational inference (VI), where the problem of Bayesian inference is cast as an optimization problem-namely, to maximize a lower bound of the logarithm of the marginal likelihood. This paves the way for a powerful and versatile framework, where pseudo-training examples are treated as optimization arguments of the approximate posterior that are jointly identified together with hyperparameters of the generative model (i.e. prior and likelihood) in the course of training. The framework can naturally handle a wide scope of supervised learning problems, ranging from regression with heteroscedastic and non-Gaussian likelihoods to classification problems with discrete labels, but also multilabel problems (where the regression or classification targets are multidimensional). The purpose of this tutorial is to provide access to the basic matter for readers without prior knowledge in both GPs and VI. It turns out that a proper exposition to the subject enables also convenient access to more recent advances in the field of GPs (like importance-weighted VI as well as inderdomain, multioutput and deep GPs) that can serve as an inspiration for exploring new research ideas.
We introduce GPflux, a Python library for Bayesian deep learning with a strong emphasis on deep Gaussian processes (DGPs). Implementing DGPs is a challenging endeavour due to the various mathematical subtleties that arise when dealing with multivariate Gaussian distributions and the complex bookkeeping of indices. To date, there are no actively maintained, open-sourced and extendable libraries available that support research activities in this area. GPflux aims to fill this gap by providing a library with state-of-the-art DGP algorithms, as well as building blocks for implementing novel Bayesian and GP-based hierarchical models and inference schemes. GPflux is compatible with and built on top of the Keras deep learning eco-system. This enables practitioners to leverage tools from the deep learning community for building and training customised Bayesian models, and create hierarchical models that consist of Bayesian and standard neural network layers in a single coherent framework. GPflux relies on GPflow for most of its GP objects and operations, which makes it an efficient, modular and extensible library, while having a lean codebase.
Deep Gaussian processes (DGPs) have struggled for relevance in applications due to the challenges and cost associated with Bayesian inference. In this paper we propose a sparse variational approximation for DGPs for which the approximate posterior mean has the same mathematical structure as a Deep Neural Network (DNN). We make the forward pass through a DGP equivalent to a ReLU DNN by finding an interdomain transformation that represents the GP posterior mean as a sum of ReLU basis functions. This unification enables the initialisation and training of the DGP as a neural network, leveraging the well established practice in the deep learning community, and so greatly aiding the inference task. The experiments demonstrate improved accuracy and faster training compared to current DGP methods, while retaining favourable predictive uncertainties.
Simulations are often used for the design of complex systems as they allow to explore the design space without the need to build several prototypes. Over the years, the simulation accuracy, as well as the associated computational cost has increased significantly, limiting the overall number of simulations during the design process. Therefore, metamodeling aims to approximate the simulation response with a cheap-to-evaluate mathematical approximation, learned from a limited set of simulator evaluations. Kernel-based methods using stationary kernels are nowadays wildly used. However, using stationary kernels for non-stationary responses can be inappropriate and result in poor models when combined with sequential design. We present the application of a novel kernel-based technique, known as Deep Gaussian Processes, which is better able to cope with these difficulties. We evaluate the method for non-stationary regression on a series of real-world problems, showing that it outperforms the standard Gaussian Processes with stationary kernels.
Simulations are often used for the design of complex systems as they allow one to explore the design space without the need to build several prototypes. Over the years, the simulation accuracy, as well as the associated computational cost, has increased significantly, limiting the overall number of simulations during the design process. Therefore, metamodeling aims to approximate the simulation response with a cheap to evaluate mathematical approximation, learned from a limited set of simulator evaluations. Kernel-based methods using stationary kernels are nowadays widely used. In many problems, the smoothness of the function varies in space, which we call nonstationary behavior [20]. However, using stationary kernels for nonstationary responses can be inappropriate and result in poor models when combined with sequential design. We present the application of two recent techniques: Deep Gaussian Processes and Gaussian Processes with nonstationary kernel, which are better able to cope with these difficulties. We evaluate the method for nonstationary regression on a series of real-world problems, showing that these recent approaches outperform the standard Gaussian Processes with stationary kernels. Results show that these techniques are suitable for the simulation community, and we outline the variational inference method for the Gaussian Process with nonstationary kernel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.