Saethre-Chotzen syndrome (acrocephalo-syndactyly type III, ACS III) is an autosomal dominant craniosynostosis with brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry and prominent ear crura. ACS III has been mapped to chromosome 7p21-22. Of interest, TWIST, the human counterpart of the murine Twist gene, has been localized on chromosome 7p21 as well. The Twist gene product is a transcription factor containing a basic helix-loop-helix (b-HLH) domain, required in head mesenchyme for cranial neural tube morphogenesis in mice. The co-localisation of ACS III and TWIST prompted us to screen ACS III patients for TWIST gene mutations especially as mice heterozygous for Twist null mutations displayed skull defects and duplication of hind leg digits. Here, we report 21-bp insertions and nonsense mutations of the TWIST gene (S127X, E130X) in seven ACS III probands and describe impairment of head mesenchyme induction by TWIST as a novel pathophysiological mechanism in human craniosynostoses.
Crouzon Syndrome (CS), Pfeiffer syndrome (PS) and the phenotypically related Jackson-Weiss (JW) variant are three craniosynostotic conditions caused by heterozygous mutations in Fibroblast Growth Factor Receptor (FGFR) genes. Screening a large cohort of 84 patients with clinical features of CS, PS or JW by direct sequencing of genomic DNA, enabled FGFR1, 2 or 3 mutation detection in 79 cases. Mutations preferentially occurred in exons 8 and 10 of FGFR2 encoding the third Ig loop of the receptor. Among the 74 FGFR2 mutations that we identified, four were novel including three missense substitutions causing CS and a 2 bp deletion creating a premature stop codon and producing JW phenotype. Five FGFR2 mutations were found in one of the two tyrosine kinase subdomains and one in the Ig I loop. Interestingly, two FGFR2 mutations creating cysteine residues (W290C and Y340C) caused severe forms of PS while conversion of the same residues into another amino-acid (W290G/R, Y340H) resulted in Crouzon phenotype exclusively. Our data provide conclusive evidence that the mutational spectrum of FGFR2 mutations in CS and PS is wider than originally thought. Genotype-phenotype analyses based on our cohort and previous studies further indicate that in spite of some overlap, PS and CS are preferentially accounted for by two distinct sets of FGFR2 mutations. A limited number of recurrent amino-acid changes (W290C, Y340C, C342R and S351C) is commonly associated with the most severe Pfeiffer phenotypes of poor prognosis.
The genes encoding succinate dehydrogenase (SDH) subunits B, C and D, act as tumour suppressors in neuro-endocrine tissues. Tumour formation has been associated with succinate accumulation. In paraganglioma cells, two forms of SDHA (type I, II) were found which might preclude significant succinate accumulation in the case of a mutation in either form. In fibroblasts only SDHA type I is found. In these cells, SDHA type I mutation leads to SDH deficiency, succinate accumulation and hypoxia-inducible factor 1alpha(HIF1alpha) nuclear translocation. HIF1alpha nuclear translocation was not observed in ATPase-deficient fibroblasts with increased superoxide production and was found to be independent of cellular iron availability in SDHA-mutant cells. This suggests that neither superoxides nor iron were causative of HIF1alpha nuclear translocation. Conversely, alpha-ketoglutarate (alpha-KG) inhibits this nuclear translocation. Therefore, the pseudo-hypoxia pathway in SDH-deficient cells depends on the HIF1alphaprolyl hydroxylase product/substrate (succinate/alpha-KG) equilibrium. In SDH deficiency, organic acids thus appear instrumental in the HIF1alpha-dependent cascade suggesting a direct link between SDH and tumourigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.