A promising approach to texturize water is by the addition of mutually incompatible polymers, leading to phase separation. Here, we demonstrate that the phase stability of aqueous polymer solutions is affected not only by chemical differences between the polymers but also by their electric charge. Direct electrochemical measurements are performed of the electric potential difference between two coexisting phases in aqueous solutions of the charged protein fish gelatin (nongelling) and the uncharged polysaccharide dextran. Charge counteracts demixing because of the entropic cost of confining the counterions to one phase, resulting in a strong shift of the critical point upon an increase of the charge on one of the polymers. Upon phase separation, the charged polymer is spatially confined, and due to the Donnan effect, an interfacial electric potential is developed. A direct proportionality is found between this Donnan potential and the difference in gelatin concentration in the two phases, for which we propose a theoretical explanation. The electrostatics may provide a new handle in the development of stable water-in-water emulsions.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Electric charge at the water-water interface of demixed solutions of neutral polymer and polyelectrolyte decreases the already ultralow interfacial tension. This is demonstrated in experiments on aqueous mixtures of dextran (neutral) and nongelling fish gelatin (charged). Upon phase separation, electric charge and a potential difference develop spontaneously at the interface, decreasing the interfacial tension purely electrostatically in a way that can be accounted for quantitatively by Poisson-Boltzmann theory. Interfacial tension is a key property when it comes to manipulating the water-water interface, for instance to create novel water-in-water emulsions.
Using a minimal algebraic model for the thermodynamics of binary rod-polymer mixtures, we provide evidence for a quintuple phase equilibrium; an observation that seems to be at odds with the Gibbs phase rule for two-component systems. Our model is based on equations of state for the relevant liquid crystal phases that are in quantitative agreement with computer simulations. We argue that the appearance of a quintuple equilibrium, involving an isotropic fluid, a nematic and smectic liquid crystal, and two solid phases, can be reconciled with a generalized Gibbs phase rule in which the two intrinsic length scales of the athermal colloid-polymer mixture act as additional field variables.
The macroscopic phase separation of aqueous mixtures of a neutral polymer and a polyelectrolyte is well described by a modified blob model, taking into account the entropy of ideal ions under the restriction of macroscopic charge neutrality. This is demonstrated by detailed measurements on aqueous mixtures of a neutral polymer (dextran) and a polymer whose charge is adjustable via the pH (nongelling fish gelatin). The critical point of the phase diagram of demixing, the asymmetric distribution of the solvent, and the interfacial electric potential difference all depend on polyelectrolyte charge and background salt concentration in a manner that is consistent with a dominant role for ion entropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.