Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching chemical education topics such as symmetry and point groups. Two main file preparation methods are discussed within this article that outlines how to prepare 3D printable chemical structures. Both methods start with either a crystallographic information file (.cif) or a protein databank (.pdb) file and are ultimately converted into a 3D stereolithography (.stl) file by using a variety of commercially and freely available software. From the series of digital 3D chemical structures prepared, 18 molecules and 7 extended solids were 3D printed. Our results show that the file preparation methods discussed within this article are both suitable routes to prepare 3D printable digital files of chemical structures. Further, our results also suggest that 3D printing is an excellent method for fabricating 3D models of molecules and extended solids.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The development of nanostructured polymeric systems containing directionally continuous poly(ionic liquid) (poly(IL)) domains has considerable implications toward a range of transport-dependent, energy-based technology applications. The controlled, synthetic integration of poly(IL)s into block copolymer (BCP) architectures provides a promising means to this end, based on their inherent ability to self-assemble into a range of defined, periodic morphologies. In this work, we report the melt-state phase behavior of an imidazolium-containing alkyl−ionic BCP system, derived from the sequential ring-opening metathesis polymerization (ROMP) of imidazolium-and alkyl-substituted norbornene monomer derivatives. A series of 16 BCP samples were synthesized, varying both the relative volume fraction of the poly(norbornene dodecyl ester) block (f DOD = 0.42−0.96) and the overall molecular weights of the block copolymers (M n values from 5000−20 100 g mol −1 ). Through a combination of small-angle X-ray scattering (SAXS) and dynamic rheology, we were able to delineate clear compositional phase boundaries for each of the classic BCP phases, including lamellae (Lam), hexagonally packed cylinders (Hex), and spheres on a body-centered-cubic lattice (S BCC ). Additionally, a liquid-like packing (LLP) of spheres was found for samples located in the extreme asymmetric region of the phase diagram, and a persistent coexistence of Lam and Hex domains was found in lieu of the bicontinuous cubic gyroid phase for samples located at the intersection of Hex and Lam regions. Thermal disordering was opposed even in very low molecular weight samples, detected only when the composition was highly asymmetric (f DOD = 0.96). Annealing experiments on samples exhibiting Lam and Hex coexistence revealed the presence of extremely slow transition kinetics, ultimately selective for one or the other but not the more complex gyroid phase. In fact, no evidence of the bicontinuous network was detected over a 2 month annealing period. The ramifications of these results for transport-dependent applications targeting the use of highly segregated poly(IL)-containing BCP systems are carefully considered.
Use of color 3D printers as a visualization tool is described in this paper. Starting from any file depicting a chemical structure, multicolor 3D printed chemical structures can be produced. Most structures were printed in hours, making the entire process from file preparation to tangible model quickly achievable. Chemical structure examples are showcased from organic chemistry, organometallic chemistry, and biochemistry. This paper presents a method of producing multicolor chemistry and biochemistry tangible models using Chimera and Magics molecular visualization and 3D printing software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.