We utilize chemically patterned substrates with arrays of progressively narrower stripes (1-15 µm) to investigate the influence of pattern size on the morphology of ultrathin dewetting polystyrene films. The scale and orientation of the spinodal-like height fluctuations of the dewetting patterns are coupled to the imposed substrate chemical frequency, providing a powerful means of morphological control. Dewetting patterns are correlated to the substrate pattern period leading to the formation of droplet arrays. The measurements confirm recent numerical simulations by Kargupta and Sharma of the existence of upper and lower cutoff scales for pattern recognition of a dewetting fluid. For pattern dimensions less than the characteristic scale on nonpatterned substrates, the droplets become anisotropic as they coarsen to a scale comparable to the stripe width, and then undergo a morphological transition to circular droplets that cross multiple stripes. This leads to quantization of droplet size and contact angles, as indicated by theory.
Microstructure plays an essential role in determining the properties of crystalline materials. A widely used method to influence microstructure is the addition of nucleating agents. Observations on films formed from clay-polymer blends indicate that particulate additives, in addition to serving as nucleating agents, may also perturb crystal growth, leading to the formation of irregular dendritic morphologies. Here we describe the formation of these 'dizzy dendrites' using a phase-field theory, in which randomly distributed foreign particle inclusions perturb the crystallization by deflecting the tips of the growing dendrite arms. This mechanism of crystallization, which is verified experimentally, leads to a polycrystalline structure dependent on particle configuration and orientation. Using computer simulations we demonstrate that additives of controlled crystal orientation should allow for a substantial manipulation of the crystallization morphology.
We show that the morphology of polyethylene oxide crystallization in thin films can be tuned to obtain circular spherulites, seaweed and symmetric dendrites, and fractal aggregation forms through the addition of clay particles and the amorphous polymer, polymethyl methacrylate. The thin-film polymer crystallization patterns are compared to a two-dimensional phase field model of dendritic growth in Ni/Cu alloys with a variable surface tension anisotropy epsilon. Some aspects of polymer crystallization patterns can be understood from the phase field calculations, but a more general model is required to describe the full range of observed patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.