From its modest beginnings as a tool to validate forms, JavaScript is now an industrial-strength language used to power online applications such as spreadsheets, IDEs, image editors and even 3D games. Since all modern web browsers support JavaScript, it provides a medium that is both easy to distribute for developers and easy to access for users. This paper provides empirical data to answer the question: Is JavaScript fast enough for numerical computations? By measuring and comparing the runtime performance of benchmarks representative of a wide variety of scientific applications, we show that sequential JavaScript is within a factor of 2 of native code. Parallel code using WebCL shows speed improvements of up to 2.28 over JavaScript for the majority of the benchmarks.
From its modest beginnings as a tool to validate forms, JavaScript is now an industrial-strength language used to power online applications such as spreadsheets, IDEs, image editors and even 3D games. Since all modern web browsers support JavaScript, it provides a medium that is both easy to distribute for developers and easy to access for users. This paper provides empirical data to answer the question: Is JavaScript fast enough for numerical computations? By measuring and comparing the runtime performance of benchmarks representative of a wide variety of scientific applications, we show that sequential JavaScript is within a factor of 2 of native code. Parallel code using WebCL shows speed improvements of up to 2.28 over JavaScript for the majority of the benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.