We study provably effective and efficient data reduction for a class of NP-hard graph modification problems based on vertex degree properties. We show fixed-parameter tractability for NP-hard graph completion (that is, edge addition) cases while we show that there is no hope to achieve analogous results for the corresponding vertex or edge deletion versions. Our algorithms are based on transforming graph completion problems into efficiently solvable number problems and exploiting ffactor computations for translating the results back into the graph setting. Our core observation is that we encounter a win-win situation: either the number of edge additions is small or the problem is polynomialtime solvable. This approach helps in answering an open question by Mathieson and Szeider [JCSS 2012] concerning the polynomial kernelizability of Degree Constraint Edge Addition and leads to a general method of approaching polynomial-time preprocessing for a wider class of degree sequence completion problems.
We study the General Position Subset Selection problem: Given a set of points in the plane, find a maximum-cardinality subset of points in general position. We prove that General Position Subset Selection is NP-hard, APX-hard, and present several fixed-parameter tractability results for the problem as well as a subexponential running time lower bound based on the Exponential Time Hypothesis. * Supported by the DFG project DAPA (NI 369/12) during a Mercator fellowship when staying at TU Berlin.
Consensus problems for strings and sequences appear in numerous application contexts, ranging among bioinformatics, data mining, and machine learning. Closing some gaps in the literature, we show that several fundamental problems in this context are NP-and W[1]-hard, and that the known (including some brute-force) algorithms are close to optimality assuming the Exponential Time Hypothesis. Among our main contributions is to settle the complexity status of computing a mean in dynamic time warping spaces which, as pointed out by Brill et al. [DMKD 2019], suffered from many unproven or false assumptions in the literature. We prove this problem to be NP-hard and additionally show that a recent dynamic programming algorithm is essentially optimal. In this context, we study a broad family of circular string alignment problems. This family also serves as a key for our hardness reductions, and it is of independent (practical) interest in molecular biology. In particular, we show tight hardness and running time lower bounds for Circular Consensus String; notably, the corresponding non-circular version is easily linear-time solvable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.