PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. ...
Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo-or heterodimers was ∼30% higher than through fulllength GHR homodimers (P < 0.0001). One-half of Europeans are hetero-or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.
Prolactin (PRL) is a paradoxical hormone. Historically known as the pituitary hormone of lactation, it has had attributed to it more than 300 separate actions, which can be correlated to the quasi-ubiquitous distribution of its receptor. Meanwhile, PRL-related knockout models have mainly highlighted its irreplaceable role in functions of lactation and reproduction, which suggests that most of its other reported target tissues are presumably modulated by, rather than strictly dependent on, PRL. The multiplicity of PRL actions in animals is in direct opposition to the paucity of arguments that suggest its involvement in human pathophysiology other than effects on reproduction. Although many experimental data argue for a role of PRL in the progression of some tumors, such as breast and prostate cancers, drugs lowering circulating PRL levels are ineffective. This observation opens new avenues for research into the understanding of whether local production of PRL is involved in tumor growth and, if so, how extrapituitary PRL synthesis is regulated. Finally, the physiological relevance of PRL variants, such as the antiangiogenic 16K-like PRL fragments, needs to be elucidated. This review is aimed at critically discussing how these recent findings have renewed the manner in which PRL should be considered as a multifunctional hormone.
Angiogenesis, the process of development of a new microvasculature, is regulated by a balance of positive and negative factors. We show both in vivo and in vitro that the members of the human prolactin͞growth hormone family, i.e., human prolactin, human growth hormone, human placental lactogen, and human growth hormone variant are angiogenic whereas their respective 16-kDa N-terminal fragments are antiangiogenic. The opposite actions are regulated in part via activation or inhibition of mitogen-activated protein kinase signaling pathway. In addition, the N-terminal fragments stimulate expression of type 1 plasminogen activator inhibitor whereas the intact molecules have no effect, an observation consistent with the fragments acting via separate receptors. The concept that a single molecule encodes both angiogenic and antiangiogenic peptides represents an efficient model for regulating the balance of positive and negative factors controlling angiogenesis. This hypothesis has potential physiological importance for the control of the vascular connection between the fetal and maternal circulations in the placenta, where human prolactin, human placental lactogen, and human growth hormone variant are expressed.Prolactin (PRL), growth hormone (GH), and placental lactogen (PL) are homologous protein hormones believed to have arisen from a common ancestral gene (1). PRL participates in the regulation of reproduction, osmoregulation, and immunomodulation (2, 3) whereas GH is involved in regulating growth and morphogenesis (4). Human (h) GHs, unlike other mammalian GHs, bind to the PRL receptor and thus display PRL-like activity; however, hPRL does not bind to the hGH receptor (5). PRL and GH are produced mainly by the anterior pituitary in all vertebrates. PRL is expressed also in lymphocytes and in the decidua (6). The human placenta expresses two structural homologs of hGH, hPL and a variant of hGH (hGH-V) (7). hGH-V rather than pituitary hGH is believed to regulate maternal metabolism during the second half of pregnancy. hPL is somatotropic in fetal tissues and contributes to stimulating mammary cell proliferation (8). Rodent placentas express and secrete several proteins whose biological activities are more PRL-like than GH-like; these include proliferin (PLF) and a proliferin-related peptide (PRP) (9).Members of the PRL͞GH family and derived peptides have been reported to both stimulate and inhibit angiogenesis. PLF expressed during the first half of pregnancy in the mouse is angiogenic whereas PRP expressed later in gestation is antiangiogenic. These findings suggest that PLF and PRP might play a role in initiating and stopping placental neovascularization (9). Human GH was reported to be angiogenic in vitro (10) whereas both bovine and chicken GH were shown to be angiogenic in vivo (11). We have shown that the 16-kDa N-terminal fragments (16K) of rat PRL and hPRL are antiangiogenic both in vitro (12) and in vivo (13). Rat PRL is cleaved by cathepsin D (14) to yield a 16-kDa N-terminal fragment and a 7-kDa C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.