We present a method to target voltage-sensitive fluorescent dyes to specified cells using an enzyme-catalyzed fluorogenic reaction on cell surfaces. The dye/enzyme hybrids are composed of a photoinduced electron transfer (PeT)-based fluorescent voltage indicator and complementary enzyme expressed on the cell surface. Action of the exogenous enzyme on the dye results in fluorogenic activation of the dye, enabling fast voltage imaging in defined neurons, with sensitivity surpassing purely genetically-encoded approaches. We employ a bulky cyclopropylmethyl acetoxymethyl ester to diminish the fluorescence of a PeT-based voltage-sensitive dye, or VoltageFluor. The hydrolytically stable ester can be removed by the action of porcine liver esterase (PLE) to reveal the bright, unmodified VoltageFluor. We established that the chemically modified VoltageFluor is a substrate for PLE in vitro and in live cells. When PLE is targeted to the external face of cell membranes, it controls the apparent staining of cells. Use of neuron-specific promoters can direct staining to mammalian neurons to provide clear detection of neuronal action potentials in single trials. All of the new VoltageFluors targeted by esterase expression report single spikes in cultured mammalian neurons. The best, VF-EX2, does so with a signal-to-noise ratio (SNR) nearly double that of comparable genetically-encoded voltage reporters. By targeting PLE to neurons, VF-EX2 can interrogate the neuromodulatory effects of serotonin in cultured hippocampal neurons. Together, we show that a combination of synthetic chemistry and biochemistry enables bright and fast voltage imaging from genetically-defined neurons in culture.
Methods for optical measurement of voltage dynamics in living cells are attractive because they provide spatial resolution surpassing traditional electrode-based measurements and temporal resolution exceeding that of widely-used Ca 2+-imaging. Chemically-synthesized voltage-sensitive dyes that use photoinduced electron transfer (PeT) as a voltage-sensing trigger offer high voltage sensitivity and fast response kinetics, but targeting chemical indicators to specific cells remains an outstanding challenge. Here, we present a new family of readily functionalizable, fluoresceinbased voltage sensitive fluorescent dyes (sarcosine-VoltageFluors) that can be covalently attached to a genetically-encoded cell surface receptor to achieve voltage imaging from genetically defined neurons. We synthesized four new VoltageFluor derivatives that possess carboxylic acid functionality for simple conjugation to flexible tethers. The best of this new group of dyes was conjugated via a polyethyleneglycol (PEG) linker to a small peptide (SpyTag, 13 amino acids) that directs binding and formation of a covalent bond with its binding partner, SpyCatcher (15 kDa). The new VoltageSpy dyes effectively label cells expressing cell-surface SpyCatcher, display good voltage sensitivity, and maintain fast response kinetics. In cultured neurons, VoltageSpy dyes enable robust, single-trial optical detection of action potentials at neuronal soma with sensitivity exceeding genetically encoded voltage indicators. Importantly, genetic targeting of chemically synthesized dyes enables VoltageSpy to report on action potentials in axons and dendrites in single trials, tens to hundreds of micrometers away from the cell body. Genetic targeting of synthetic voltage indicators with VoltageSpy enables voltage imaging with low nanomolar dye concentration and offers a promising method for allying the speed and sensitivity of synthetic indicators with the enhanced cellular resolution of genetically encoded probes.
This paper discloses the design, synthesis, and imaging applications of the first member of a new class of SPOTs, small-molecule photoactivatable optical sensors of transmembrane potential. SPOT2.1.Cl features an established voltage-sensitive dye, VoltageFluor2.1.Cl—or—VF capped with a dimethoxy-o-nitrobenzyl (DMNB) caging group to effectively eliminate fluorescence of the VF dye prior to uncaging. SPOT2.1.Cl localizes to cell membranes and displays weak fluorescence until photoactivated. Illumination generates the parent VF dye which then optically reports on changes in the membrane voltage. After photoactivation with spatially restricted light, SPOT2.1.Cl-loaded cells display bright, voltage-sensitive fluorescence associated with the plasma membrane, while neighboring cells remain dark. Activated SPOT reports on action potentials in single trials. SPOT can be activated in neuron cell bodies or uncaged in dendrites to enable structural tracing via “backfilling” of the dye to the soma, followed by functional imaging in the labeled cell. The combination of cellular specificity achieved through spatially-defined patterns of illumination, coupled with the fast, sensitive, and non-capacitive voltage sensing characteristics of VF dyes makes SPOT2.1.Cl a useful tool for interrogating both structure and function of neuronal systems.
Voltage-sensitive fluorescent reporters can reveal fast changes in the membrane potential in neurons and cardiomyocytes. However, in many cases, illumination in the presence of the fluorescent reporters results in disruptions to the action potential shape that limits the length of recording sessions. We show here that a molecular prosthetic approach, previously limited to fluorophores, rather than indicators, can be used to substantially prolong imaging in neurons and cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.