Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/.
Purpose: Automated delineation of structures and organs is a key step in medical imaging. However, due to the large number and diversity of structures and the large variety of segmentation algorithms, a consensus is lacking as to which automated segmentation method works best for certain applications. Segmentation challenges are a good approach for unbiased evaluation and comparison of segmentation algorithms. Methods: In this work, we describe and present the results of the Head and Neck Auto-Segmentation Challenge 2015, a satellite event at the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 conference. Six teams participated in a challenge to segment nine structures in the head and neck region of CT images: brainstem, mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands. Results: This paper presents the quantitative results of this challenge using multiple established error metrics and a well-defined ranking system. The strengths and weaknesses of the different auto-segmentation approaches are analyzed and discussed. Conclusions: The Head and Neck Auto-Segmentation Challenge 2015 was a good opportunity to assess the current state-of-the-art in segmentation of organs at risk for radiotherapy treatment. Participating teams had the possibility to compare their approaches to other methods under unbiased and standardized circumstances. The results demonstrate a clear tendency toward more general purpose and fewer structure-specific segmentation algorithms.
Objective To examine whether MRI-based 3D bone shape predicts the onset of radiographic knee osteoarthritis (OA). Methods We conducted a case-control study within the Osteoarthritis Initiative by identifying knees that developed incident tibiofemoral radiographic knee OA (case knees) over follow-up, and matching them to two random control knees. Using knee MRI's, we used active appearance modeling of the femur, tibia and patella and linear discriminant analysis to identify vectors that best classified knees having OA vs. not. Vectors were scaled such that -1 and +1 represented the mean non-OA and mean OA shapes, respectively. We examined the relation of 3D bone shape to incident OA (new onset Kellgren and Lawrence (KL) grade ≥2) occurring 12 months later using conditional logistic regression. Results 178 case knees (incident OA) were matched to 353 control knees. The whole joint (i.e., tibia, femur, and patella) 3D bone shape vector had the strongest magnitude of effect, with knees in the highest tertile having 3.0 times higher likelihood of developing incident radiographic knee OA 12 months later compared with those in the lowest tertile (95% CI 1.8-5.0, p<0.0001). The associations were even stronger among knees that showed completely normal radiographs before incidence (KL grade 0) (OR 12.5, 95% CI 4.0-39.3). Bone shape at baseline, often several years before incidence, predicted later OA. Conclusions MRI-based 3D bone shape predicted the later onset of radiographic OA. Further study is warranted to determine whether such methods can detect treatment effects in trials and provide pathophysiologic insight into OA development.
Changes in bone area discriminated people with OA from controls and was more responsive than the current and impending standards for assessing OA progression. The shape change in OA bone provides a new window on OA pathogenesis and a focus for clinical trials.
Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.