Stapled α−helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proofof-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.T he human transcription factor protein p53 induces cell-cycle arrest and apoptosis in response to DNA damage and cellular stress and thereby plays a critical role in protecting cells from malignant transformation (1, 2). Inactivation of this guardian of the genome either by deletion or mutation or through overexpression of inhibitory proteins is the most common defect in human cancers (1, 2). Cancers that overexpress the inhibitory proteins MDM2 and MDMX also possess wild-type p53 (p53WT), and thus pharmacological disruption of the interactions between p53 and MDM2 and MDMX offers the opportunity to restore p53-dependent cell-cycle arrest and apoptosis in this important class of tumors (3-6).MDM2 negatively regulates p53 function through multiple mechanisms, including direct binding that masks the p53 transactivation domain, impairing nuclear import of the p53 protein, and ubiquitination and proteasomal degradation of the p53 protein (6, 7). Consequently, aberrant MDM2 overexpression and gene amplification contribute to accelerated cancer development and growth (1, 8). The other negative regulator, MDMX, possesses a similar p53-binding activity and also effectively inhibits p53 transcriptional activity. Amplification of MDMX is seen in many tumors, including melanoma, breast, head and neck, hepatocellular, and retinoblastoma, and, interestingly, amplification of MDMX appears to correlate with both p53WT status and an absence of MDM2 amplification (6, 9, 10). MDMX does not have the intrinsic E3 ubiquitin ligase activity of MDM2 and cannot affect p53 stability, but MDM2/MDMX heterodimers can increase ubiquitin ligase activity relative to the MDM2 monomer. Given these functional differences, MDM2 and MDMX are each unable to compensate for the loss of the other, and they regulate nonoverlapping fu...
The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these inter-actions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled a-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.
The repression of repetitive elements is an important facet of p53's function as a guardian of the genome. Paradoxically, we found that p53 activated by MDM2 inhibitors induced the expression of endogenous retroviruses (ERVs) via increased occupancy on ERV promoters and inhibition of two major ERV repressors, histone demethylase LSD1 and DNA methyltransferase DNMT1. Double-stranded RNA stress caused by ERVs triggered type I/III interferons expression and antigen processing and presentation. Pharmacological activation of p53 in vivo unleashed the interferon program, promoted T cell infiltration and significantly enhanced the efficacy of checkpoint therapy in a xenograft tumor model. Furthermore, MDM2 inhibitor ALRN-6924 induced a viral mimicry pathway and tumor inflammation signature genes in melanoma patients.Our results identify ERV expression as the central mechanism whereby p53 induction overcomes tumor immune evasion and transforms tumor microenvironment to a favorable phenotype, providing a rationale for the synergy of MDM2 inhibitors and immunotherapy. Significance:We found that p53 activated by MDM2 inhibitors induced the expression of ERVs, in part due via epigenetic factors LSD1 and DNMT1. Induction of IFN response caused by ERV de-repression upon p53-targeting therapies provides a possibility to overcome resistance to immune checkpoint blockade and potentially transform 'cold' tumors into 'hot'.
T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.