Abstract. We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
We define a risk-averse nonanticipative feasible policy for multistage stochastic programs and propose a methodology to implement it. The approach is based on dynamic programming equations written for a risk-averse formulation of the problem. This formulation relies on a new class of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of such risk functionals are given and used to derive conditions of coherence. In the one-period case, conditions for convexity and consistency with second order stochastic dominance are also provided. The risk-averse dynamic programming equations are specialized considering convex combinations of one-period extended polyhedral risk measures such as spectral risk measures. To implement the proposed policy, the approximation of the risk-averse recourse functions for stochastic linear programs is discussed. In this context, we detail a stochastic dual dynamic programming algorithm which converges to the optimal value of the risk-averse problem.
Abstract. We consider interstage dependent stochastic linear programs where both the random right-hand side and the model of the underlying stochastic process have a special structure. Namely, for equality constraints (resp. inequality constraints) the right-hand side is an affine function (resp. a given function bt) of the process value for the current time step t. As for m-th component of the process at time step t, it depends on previous values of the process through a function htm.For this type of problem, to obtain an approximate policy under some assumptions for functions bt and htm, we detail a stochastic dual dynamic programming algorithm. Our analysis includes some enhancements of this algorithm such as the definition of a state vector of minimal size, the computation of feasibility cuts without the assumption of relatively complete recourse, as well as efficient formulas for sharing optimality and feasibility cuts between nodes of the same stage. The algorithm is given for both a non-risk-averse and a risk-averse model. We finally provide preliminary results comparing the performances of the recourse functions corresponding to these two models for a real-life application.
We introduce an extension of Stochastic Dual Dynamic Programming (SDDP) to solve stochastic convex dynamic programming equations. This extension applies when some or all primal and dual subproblems to be solved along the forward and backward passes of the method are solved with bounded errors (inexactly). This inexact variant of SDDP is described both for linear problems (the corresponding variant being denoted by ISDDP-LP) and nonlinear problems (the corresponding variant being denoted by ISDDP-NLP). We prove convergence theorems for ISDDP-LP and ISDDP-NLP both for bounded and asymptotically vanishing errors. Finally, we present the results of numerical experiments comparing SDDP and ISDDP-LP on a portfolio problem with direct transaction costs modelled as a multistage stochastic linear optimization problem. On these experiments, ISDDP-LP allows us to obtain a good policy faster than SDDP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.