The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment, but the molecular mechanism underlying its function remains unknown. Here we present a subnanometer resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that Ndc80 binds the microtubule with a tubulin monomer repeat, recognizing α- and β-tubulin at both intra- and inter-dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments via interactions mediated by the amino-terminal tail of the Ndc80 protein, the site of phospho-regulation by the Aurora B kinase. Ndc80's mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing Ndc80-microtubule attachments.
Background and Purpose-MRI segmentation and mapping techniques were used to assess evidence in support of categorical distinctions between periventricular white matter hyperintensities (PVWMH) and deep WMH (DWMH
The Dam1 kinetochore complex is essential for chromosome segregation in budding yeast. This ten-protein complex self-assembles around microtubules, forming ring-like structures that move with depolymerizing microtubule ends, a mechanism with implications for cellular function. Here we used EM-based single-particle and helical analyses to define the architecture of the Dam1 complex at 30-A resolution and the self-assembly mechanism. Ring oligomerization seems to be facilitated by a conformational change upon binding to microtubules, suggesting that the Dam1 ring is not preformed, but self-assembles around kinetochore microtubules. The C terminus of the Dam1p protein, where most of the Aurora kinase Ipl1 phosphorylation sites reside, is in a strategic location to affect oligomerization and interactions with the microtubule. One of Ipl1's roles might be to fine-tune the coupling of the microtubule interaction with the conformational change required for oligomerization, with phosphorylation resulting in ring breakdown.
Proper ovarian development requires the cell type-specific transcription factor TAF4b, a subunit of the core promoter recognition complex TFIID. We present the 35 A structure of a cell type-specific core promoter recognition complex containing TAF4b and TAF4 (4b/4-IID), which is responsible for directing transcriptional synergy between c-Jun and Sp1 at a TAF4b target promoter. As a first step toward correlating potential structure/function relationships of the prototypic TFIID versus 4b/4-IID, we have compared their 3D structures by electron microscopy and single-particle reconstruction. These studies reveal that TAF4b incorporation into TFIID induces an open conformation at the lobe involved in TFIIA and putative activator interactions. Importantly, this open conformation correlates with differential activator-dependent transcription and promoter recognition by 4b/4-IID. By combining functional and structural analysis, we find that distinct localized structural changes in a megadalton macromolecular assembly can significantly alter its activity and lead to a TAF4b-induced reprogramming of promoter specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.