ONS for treatment of refractory CCH and CM is a cost-intensive treatment option with a significant complication rate. Nevertheless, patients with refractory primary headache disorders may experience substantial relief of pain attacks, and headache days, respectively.
BackgroundThere is rising evidence that in glioblastoma(GBM) surgery an increase of extent of resection(EoR) leads to an increase of patient’s survival. Based on histopathological assessments tumor depiction of Gd-DTPA enhancement and 5-aminolevulinic-acid-fluorescence(5-ALA) might be synergistic for intraoperative resection control.ObjectiveTo assess impact of additional use of 5-ALA in intraoperative MRI(iMRI) assisted surgery of GBMs on extent of resection(EoR), progression free survival(PFS) and overall survival(OS).MethodsWe prospectively enrolled 33 patients with GBMs eligible for gross-total-resection(GTR) and performed a combined approach using 5-ALA and iMRI. As a control group, we performed a retrospective matched pair assessment, based on 144 patients with iMRI-assisted surgery. Matching criteria were, MGMT promotor methylation, recurrent surgery, eloquent location, tumor size and age. Only patients with an intended GTR and primary GBMs were included. We calculated Kaplan Mayer estimates to compare OS and PFS using the Log-Rank-Test. We used the T-test to compare volumetric results of EoR and the Chi-Square-Test to compare new permanent neurological deficits(nPND) and general complications between the two groups.ResultsMedian follow up was 31 months. No significant differences between both groups were found concerning the matching criteria. GTR was achieved significantly more often (p <0.010) using 5-ALA&iMRI (100%) compared to iMRI alone(82%). Mean EoR was significantly(p<0.004) higher in 5-ALA&iMRI-group(99.7%) than in iMRI-alone-group(97.4%) Rate of complications did not differ significantly between groups(21% iMRI-group,27%5-ALA&iMRI-group,p<0.518). nPND were found in 6% in both groups. Median PFS (6mo resp.;p<0.309) and median OS(iMRI:17mo;5-ALA&iMRI-group:18mo;p<0.708)) were not significantly different between both groups.ConclusionWe found a significant increase of EoR when combining 5-ALA&iMRI compared to use of iMRI alone. Maximizing EoR did not lead to an increase of complications or neurological deficits if used with neurophysiological monitoring in eloquent lesions. No final conclusion can be drawn whether a further increase of EoR benefits patient’s progression free survival and overall survival.
Alterations of the intracellular ubiquitin-proteasome pathway are found in neurodegenerative and inflammatory disorders of the central nervous system, as well as in its malignancies. Inhibitory substrates of the proteasomes represent promising approaches to control autoimmune inflammations and induction of apoptosis in cancer cells. Extracellular circulating proteasomes are positively correlated to outcome prognosis in hematogenic neoplasias and the outcome in critically ill patients. Previously, we reported raised levels of proteolytic active 20S proteasomes in the extracellular alveolar space in patients with acute respiratory distress syndrome (ARDS). For the cerebrospinal fluid, we assumed that extracellular circulating proteasomes with enzymatic activity can be found, too. Cerebrospinal fluid (CSF) samples of twenty-six patients (14 females, 12 males), who underwent diagnostic spinal myelography, were analyzed for leukocyte cell count, total protein content, lactate and interleukine-6 (Il-6) concentrations. CSF samples were analyzed for concentration and enzymatic activity of extracellular 20S proteasomes (fluorescenic substrate cleavage; femtokatal). Blood samples were analyzed with respect to concentration of extracellular circulating proteasomes. Choroidal plexus was harvested at autopsies and examined with immunoelectron microscopy (EM) for identification of possible transportation mechanisms. Statistical analysis was performed using SPSS (18.0.3). In all patients, extracellular proteasome was found in the CSF. The mean concentration was 24.6 ng/ml. Enzymatic activity of the 20S subunits of proteasomes was positively identified by the fluorescenic subtrate cleavage at a mean of 8.5 fkat/ml. Concentrations of extracellular proteasomes in the CSF, total protein content and Il-6 were uncorrelated. Immunoelectron microscopy revealed merging vesicles of proteasomes with the outer cell membrane suggestive of an exozytic transport mechanism. For the first time, extracellular circulating 20S proteasome in the CSF of healthy individuals is identified and its enzymatic activity detected. A possible exozytic vesicle-bond transportation mechanism is suggested by immunoelectron microscopy. The present study raises more questions on the function of extracellular proteasome in the CSF and encourages further studies on the role of extracellular protesomes in pathological conditions of the central nervous system (tumor lesions and inflammatory processes).
Intra-operative ultrasound (ioUS) is a very useful tool in surgery of spinal lesions. Here we focus on modern ioUS to analyze its use for localisation, visualisation and resection control in intramedullary cavernous malformations (IMCM). A series of 35 consecutive intradural lesions were operated in our hospital in a time period of 24 months using modern ioUS with a high frequency 7-15 MHz transducer and a true real time 3D transducer (both Phillips iU 22 ultrasound system). Six of those cases were treated with the admitting diagnosis of a deep IMCM (two cervical, four thoracic lesions). IoUS images were performed before and after the IMCM resection. Pre-operative and early postoperative MRI images were performed in all patients. In all six IMCM cases a complete removal of the lesion was achieved microsurgically resulting in an improved neurological status of all patients. High frequency ioUS emerged to be a very useful tool during surgery for localization and visualization. Excellent resection control by ultrasound was possible in three cases. Minor resolution of true real time 3D ioUS decreases the actual advantage of simultaneous reconstruction in two planes. High frequency ioUS is the best choice for intraoperative imaging in deep IMCM to localize and to visualize the lesion and to plan the perfect surgical approach. Additionally, high frequency ioUS is suitable for intra-operative resection control of the lesion in selected IMCM cases. Methods: A series of 35 consecutive intradural lesions were operated in our hospital in a time period of 24 months using modern ioUS with a high frequency 7-15 MHz transducer and a true real time 3D transducer (both Phillips iU 22 ultrasound system).Six of those cases were treated with the admitting diagnosis of a deep IMCM (two cervical, four thoracic lesions). IoUS images were performed before and after the IMCM resection. Pre-and early postoperative MRI images were performed in all patients.Results: In all six IMCM cases a complete removal of the lesion was achieved microsurgically resulting in an improved neurological status of all patients. High frequency ioUS emerged to be a very useful tool during surgery for localization and visualization. Excellent resection control by ultrasound was possible in 3 cases. Minor resolution of true real time 3D ioUS decreases the actual advantage of simultaneous reconstruction in 2 planes. Conclusion:High frequency ioUS is the best choice for intra-operative imaging in deep IMCM to localize and to visualize the lesion and to plan the perfect surgical approach.Additionally, high frequency ioUS is suitable for intra-operative resection control of the lesion in non acute IMCM cases. Resection control in acute IMCM lesions is difficult to interpret since sometimes perifocal edema and/or perifocal hemosiderin can hinder the accurate differentiation of medullary to pathological tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.