The variegated scallop (Mimachlamys varia) is a filter feeder bivalve encountered in marine regions of the Atlantic coast. In particular, it is present in the La Rochelle marina (France), where it is used for the biomonitoring of marine pollution, due to its ability to strongly bioaccumulate pollutants. In this semi-closed environment, contamination generated by port activities leads to an accumulation of both organic and metal pollutants. Zinc is one of these pollutants, present at a dose of up to 150 to µg.L -1 . This study investigated the effects of 48 h zinc exposure upon the metabolic profiles of Mimachlamys varia using UHPLC/QToF (ultrahigh performance liquid chromatography-quadrupole time-of-flight) tandem mass spectrometry metabolomics. After acclimation in mesocosms recreating in situ conditions, both controls and exposed with Zn 2+ (150 μg.L -1) bivalves were dissected to recover the gills after 48 h and stored at -80°C before metabolites extraction. UHPLC/QToF tandem mass spectrometry was performed to study metabolite composition of samples. Statistical analysis of results using multivariate techniques showed a good classification between control and exposed groups. Eleven identified metabolites were found to be downmodulated in exposed scallops. These variations could reflect potential zinc effects on several of the biological processes, such as energy metabolism, osmoregulation and defense against oxidative stress. Among the eleven metabolites highlighted, four were reported for the first time in an aquatic organism exposed to Zn. This study demonstrates once again the diversity of interactions between bivalves and metals and the complexity of the physiological response of marine bivalves to pollutants.
Ports are a good example of how coastal environments, gathering a set of diverse ecosystems, are subjected to pollution factors coming from human activities both on land and at sea. Among them, trace element as copper represents a major factor. Abundant in port ecosystem, copper is transported by runoff water and results from diverse port features (corrosion of structures, fuel, anti-fouling products, etc.). The variegated scallop Mimachlamys varia is common in the Atlantic port areas and is likely to be directly influenced by copper pollution, due to its sessile and filtering lifestyle. Thus, the aim of the present study is to investigate the disruption of the variegated scallop metabolism, under a short exposure (48 h) to a copper concentration frequently encountered in the waters of the largest marina in Europe (82 μg/L). For this, we chose a non-targeted metabolomic approach using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS), offering a high level of sensitivity and allowing the study without a priori of the entire metabolome. We described 28 metabolites clearly modulated by copper. They reflected the action of copper on several biological functions such as osmoregulation, oxidative stress, reproduction and energy metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.