Land ecosystems absorb on average 30 per cent of anthropogenic carbon dioxide (CO) emissions, thereby slowing the increase of CO concentration in the atmosphere. Year-to-year variations in the atmospheric CO growth rate are mostly due to fluctuating carbon uptake by land ecosystems. The sensitivity of these fluctuations to changes in tropical temperature has been well documented, but identifying the role of global water availability has proved to be elusive. So far, the only usable proxies for water availability have been time-lagged precipitation anomalies and drought indices, owing to a lack of direct observations. Here, we use recent observations of terrestrial water storage changes derived from satellite gravimetry to investigate terrestrial water effects on carbon cycle variability at global to regional scales. We show that the CO growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO growth. We demonstrate that this global relationship is independent of known temperature effects and is underestimated in current carbon cycle models. Our results indicate that interannual fluctuations in terrestrial water storage strongly affect the terrestrial carbon sink and highlight the importance of the interactions between the water and carbon cycles.
Abstract. Freshwater resources are of high societal relevance, and understanding their past variability is vital to water management in the context of ongoing climate change. This study introduces a global gridded monthly reconstruction of runoff covering the period from 1902 to 2014. In situ streamflow observations are used to train a machine learning algorithm that predicts monthly runoff rates based on antecedent precipitation and temperature from an atmospheric reanalysis. The accuracy of this reconstruction is assessed with cross-validation and compared with an independent set of discharge observations for large river basins. The presented dataset agrees on average better with the streamflow observations than an ensemble of 13 state-of-the art global hydrological model runoff simulations. We estimate a global long-term mean runoff of 38 452 km3 yr−1 in agreement with previous assessments. The temporal coverage of the reconstruction offers an unprecedented view on large-scale features of runoff variability in regions with limited data coverage, making it an ideal candidate for large-scale hydro-climatic process studies, water resource assessments, and evaluating and refining existing hydrological models. The paper closes with example applications fostering the understanding of global freshwater dynamics, interannual variability, drought propagation and the response of runoff to atmospheric teleconnections. The GRUN dataset is available at https://doi.org/10.6084/m9.figshare.9228176 (Ghiggi et al., 2019).
Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations1. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale2–5. Here we use factorial climate model simulations6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture–atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role4, which is not readily apparent from land surface model simulations and observational analyses2,5. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally5,7, as well as when conducting field-scale investigations of the response of the ecosystem to droughts8,9. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.