The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing. In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only. Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans.
Neuropathic pain following spinal cord injury involves plastic changes along the whole neuroaxis. Current neuroimaging studies have identified grey matter volume (GMV) and resting-state functional connectivity changes of pain processing regions related to neuropathic pain intensity in spinal cord injury subjects. However, the relationship between the underlying neural processes and pain extent, a complementary characteristic of neuropathic pain, is unknown. We therefore aimed to reveal the neural markers of widespread neuropathic pain in spinal cord injury subjects and hypothesized that those with greater pain extent will show higher GMV and stronger connectivity within pain related regions. Thus, 29 chronic paraplegic subjects and 25 healthy controls underwent clinical and electrophysiological examinations combined with neuroimaging. Paraplegics were demarcated based on neuropathic pain and were thoroughly matched demographically. Our findings indicate that (a) spinal cord injury subjects with neuropathic pain display stronger connectivity between prefrontal cortices and regions involved with sensory integration and multimodal processing, (b) greater neuropathic pain extent, is associated with stronger connectivity between the posterior insular cortex and thalamic sub-regions which partake in the lateral pain system and (c) greater intensity of neuropathic pain is related to stronger connectivity of regions involved with multimodal integration and the affective-motivational component of pain. Overall, this study provides neuroimaging evidence that the pain phenotype of spinal cord injury subjects is related to the underlying function of their resting brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.