Aircraft intermittent combustion engines often incorporate turbochargers adapted from ground-based applications to improve their efficiency and performance. These turbochargers can operate at off-design conditions and experience blade failures brought on by aerodynamic-induced blade resonances. A reduced-order model of the aeroelastic response of general fluid-structural configurations is developed using the Euler-Lagrange equation informed by numerical data from uncoupled computational fluid dynamic (CFD) and computational structural dynamic calculations. The structural response is derived from a method of assumed-modes approach. The unsteady fluid response is described by a modified version of piston theory that approximates the local transient pressure fluctuation in conjunction with steady CFD solution data. The reduced-order model is first applied to a classical panel flutter scenario and found to predict a flutter boundary that compares favorably to the boundary identified by existing theory and experimental data. The model is then applied to the high-pressure turbine of a dual-stage turbocharger. The model predictions are shown to reliably determine the lack of turbine blade flutter, and rudimentary damping comparisons are performed to assess the ability of the model to ascertain the susceptibility of the turbine to forced response. Obstacles associated with the current experimental state of the art that impinge upon further numerical validation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.