Calcineurin (CaN) is a calcium- and calmodulin-dependent protein serine/threonine phosphate which is critical for several important cellular processes, including T-cell activation. CaN is the target of the immunosuppressive drugs cyclosporin A and FK506, which inhibit CaN after forming complexes with cytoplasmic binding proteins (cyclophilin and FKBP12, respectively). We report here the crystal structures of full-length human CaN at 2.1 A resolution and of the complex of human CaN with FKBP12-FK506 at 3.5 A resolution. In the native CaN structure, an auto-inhibitory element binds at the Zn/Fe-containing active site. The metal-site geometry and active-site water structure suggest a catalytic mechanism involving nucleophilic attack on the substrate phosphate by a metal-activated water molecule. In the FKBP12-FK506-CaN complex, the auto-inhibitory element is displaced from the active site. The site of binding of FKBP12-FK506 appears to be shared by other non-competitive inhibitors of calcineurin, including a natural anchoring protein.
Using a combination of iterative structure-based design and an analysis of oral pharmacokinetics and antiviral activity, AG1343 (Viracept, nelfinavir mesylate), a nonpeptidic inhibitor of HIV-1 protease, was identified. AG1343 is a potent enzyme inhibitor (Ki = 2 nM) and antiviral agent (HIV-1 ED50 = 14 nM). An X-ray cocrystal structure of the enzyme-AG1343 complex reveals how the novel thiophenyl ether and phenol-amide substituents of the inhibitor interact with the S1 and S2 subsites of HIV-1 protease, respectively. In vivo studies indicate that AG1343 is well absorbed orally in a variety of species and possesses favorable pharmacokinetic properties in humans. AG1343 (Viracept) has recently been approved for marketing for the treatment of AIDS.
AG1343 ([3S-(3R*,4aR*,8aR*,2'S*,3'S*)]-2-[2' hydroxy-3'-phenylthiomethyl-4'-aza-5'-oxo-5'-(2''-methyl-3''-hydro xy-phenyl) pentyl]-decahydroiso-quinoline-3-N-t-butylcarboxamide methanesulfonic acid) is a selective, nonpeptidic inhibitor of human immunodeficiency virus (HIV) protease (Ki = 2 nM) that was discovered by protein structure-based drug design methodologies. AG1343 was effective against the replication of several laboratory and clinical HIV type 1 (HIV-1) or HIV-2 isolates including pyridinone- and zidovudine-resistant strains, with 50% effective concentrations ranging from 9 to 60 nM. In reversibility studies, inhibition of gag (p55) proteolytic processing in HIV-1 particles from cells treated with AG1343 was maintained for up to 36 h after drug removal. The ability of virus to develop resistance to AG1343 was studied by serial passage of HIV-1 NL4.3 in the presence of increasing concentrations of drug. After 28 passages, a variant with a 30-fold reduction in susceptibility to AG1343 was isolated. Molecular analysis of the protease from this variant indicated a double change from a Met to Ile at residue 46 and an Ile to Val or Ala at residue 84 (M46I+I84V, A). Consistent with these findings, reductions in susceptibility were observed for recombinant viruses constructed to contain the single I84V change or the double M46I+I84V substitutions. Resistance, however, was not detected for recombinant viruses containing other key mutations in HIV-1 protease, including a Val to Ile change at residue 32 or a Val to Ala or Phe at residue 82. The potent anti-HIV activity of AG1343 against several isolates suggests that AG1343 should perform well during ongoing human phase II clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.