Biaryl coupling (often labelled 'C-H activation') of aromatic systems can be achieved by potassium tert-butoxide alone in the absence of any amine or bipyridine catalyst (1,10-phenanthroline or N,N'-dimethylethylenediamine being the most common), previously reported to be essential. Various mechanistic studies and observations are presented which suggest that when 1,10-phenanthroline is employed as the catalyst, the alkoxide is destroyed almost immediately.
Alkynyl ethers and alkynyl thioethers ('ynol ethers' and 'thioynol ethers') are appealing building-blocks in synthetic chemistry due to their ease of manipulation and predictable reactivity. Until recently however, their potential has remained underexploited due to difficulties in preparation and isolation. Although recent advances in synthetic chemistry have highlighted various applications for ynol ethers, the equivalent thioynol examples have been rather less exploited despite a unique and fascinating reactivity profile. Although superficially the chemistry of alkynyl ethers and their sulfide counterparts are similar, close examination of their chemistry reveals important differences which can be exploited by the synthetic chemist. This review will examine the preparation of both classes of compound and examine their reactivity to highlight their powerful synthetic applications. Particular focus will be made of thiynol ethers whose chemistry exhibits some fascinating differences compared to their oxygen counterparts and have immense untapped potential for synthetic chemistry.
Nucleophilic attack of an alkoxide on an alkynyl sulfonamide leads to displacement of the sulfonamide at the sp centre and isolation of the ynol ether in good yield in a single operation. The mechanistic pathway has been probed by the use of coordinating additives, (13)C-labelling experiments and ab initio calculations, which indicated that an addition/elimination mechanism is in operation.
We present here valuable extensions to our previous work in preparing highly functionalized, heteroatom-substituted alkynes via displacement at an sp center. Our results show that a wide range of ynol ethers can be prepared by the same methodology and that the same protocol can be applied to the synthesis of synthetically useful thioynol ethers. We also present new observations that have led us to revise our original hypothesis in favor of a pathway involving radical intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.