Operational satellite remote sensing products are transforming rangeland management and science. Advancements in computation, data storage and processing have removed barriers that previously blocked or hindered the development and use of remote sensing products. When combined with local data and knowledge, remote sensing products can inform decision‐making at multiple scales. We used temporal convolutional networks to produce a fractional cover product that spans western United States rangelands. We trained the model with 52,012 on‐the‐ground vegetation plots to simultaneously predict fractional cover for annual forbs and grasses, perennial forbs and grasses, shrubs, trees, litter and bare ground. To assist interpretation and to provide a measure of prediction confidence, we also produced spatiotemporal‐explicit, pixel‐level estimates of uncertainty. We evaluated the model with 5,780 on‐the‐ground vegetation plots removed from the training data. Model evaluation averaged 6.3% mean absolute error and 9.6% root mean squared error. Evaluation with additional datasets that were not part of the training dataset, and that varied in geographic range, method of collection, scope and size, revealed similar metrics. Model performance increased across all functional groups compared to the previously produced fractional product. The advancements achieved with the new rangeland fractional cover product expand the management toolbox with improved predictions of fractional cover and pixel‐level uncertainty. The new product is available on the Rangeland Analysis Platform ( https://rangelands.app/), an interactive web application that tracks rangeland vegetation through time. This product is intended to be used alongside local on‐the‐ground data, expert knowledge, land use history, scientific literature and other sources of information when making interpretations. When being used to inform decision‐making, remotely sensed products should be evaluated and utilized according to the context of the decision and not be used in isolation.
1. Operational satellite remote sensing products are transforming rangeland management and science. Advancements in computation, data storage, and processing have removed barriers that previously blocked or hindered the development and use of remote sensing products. When combined with local data and knowledge, remote sensing products can inform decision making at multiple scales.2. We used temporal convolutional networks to produce a fractional cover product that spans western United States rangelands. We trained the model with 52,012 on-the-ground vegetation plots to simultaneously predict fractional cover for annual forbs and grasses, perennial forbs and grasses, shrubs, trees, litter, and bare ground. To assist interpretation and to provide a measure of prediction confidence, we also produced spatially-explicit, pixel-level estimates of uncertainty. We evaluated the model with 5,780 on-the-ground vegetation plots removed from the training data.3. Model evaluation averaged 6.3% mean absolute error and 9.6% root mean squared error. Model performance increased across all functional groups compared to the previously produced fractional product. 4. The advancements achieved with the new rangeland fractional cover product expand the management toolbox with improved predictions of fractional cover and pixel-level uncertainty. The new product is available on the Rangeland Analysis Platform (https://rangelands.app/), an interactive web application that tracks rangeland vegetation through time. This product is intended to be used alongside local on-the-ground data, expert knowledge, land use history, scientific literature, and other sources of information when making interpretations. When being used to inform decision-making, remotely sensed products should be evaluated and utilized according to the context of the decision and not be used in isolation.
Climate change is well documented at the global scale, but local and regional changes are not as well understood. Finer, local- to regional-scale information is needed for creating specific, place-based planning and adaption efforts. Here the development of an indicator-focused climate change assessment in Idaho is described. This interdisciplinary framework couples end users’ data needs with observed, biophysical changes at local to regional scales. An online statewide survey of natural resource professionals was conducted to assess the perceived impacts from climate change and determine the biophysical data needed to measure those impacts. Changes to water resources and wildfire risk were the highest areas of concern among resource professionals. Guided by the survey results, 15 biophysical indicator datasets were summarized that included direct climate metrics (e.g., air temperature) and indicators only partially influenced by climate (e.g., wildfire). Quantitative changes in indicators were determined using time series analysis from 1975 to 2010. Indicators displayed trends of varying likelihood over the analysis period, including increasing growing-season length, increasing annual temperature, increasing forest area burned, changing mountain bluebird and lilac phenology, increasing precipitation intensity, earlier center of timing of streamflow, and decreased 1 April snowpack; changes in volumetric streamflow, salmon migration dates, and stream temperature displayed the least likelihood. A final conceptual framework derived from the social and biophysical data provides an interdisciplinary case example useful for consideration by others when choosing indicators at local to regional scales for climate change assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.