We perform a spin polarized density-functional theory (DFT) study of the electronic and magnetic properties of pristine and chemically doped germanene nanoribbons (GeNRs) with different widths. It is found that the Ge atom at the ribbon edge always prefers to be substituted by an impurity atom. Our study reveals that a single N or B atom substitution induces a semiconducting-metal transition in armchair oriented germanene nanoribbons (AGeNRs) as evidenced by the appearance of a half-filled band with less dispersion; however, N and B co-doping at the ribbon edges only modifies their band gaps, due to the accomplishment of an effective charge compensation. A single N or B atom substitution usually turns antiferromagnetic (AFM) semiconducting zigzag germanene nanoribbons (ZGeNRs) into ferromagnetic (FM) semiconductors. This AFM-FM transition is attributed mainly to the perturbation of π and π states localized at the doped edge. Double atom substitutions (regardless of N-N, B-B or N-B configurations) at the edges of ZGeNRs removes the spin-polarization at both edges and transforms them into non-magnetic (NM) semiconductors. Moreover, it is interesting that some single atom doped ZGeNRs can exhibit a FM half-metallic character with 100% spin-polarization at the Fermi level. Our results suggest that doped AGeNRs and ZGeNRs have potential applications in Ge-based nanoelectronics, such as field effect transistors (FETs), negative differential resistance (NDR) and spin filter (SF) devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.