SummaryAn acoustic velocity sensor is described. It uses a small volume of ionized gas as sensing element to estimate the velocity of air particles, especially their oscillations caused by an acoustic perturbation. The generation of charged particles is performed by a negative point-to-plane discharge, the plane anode being split into two electrically insulated parts. The principle of this velocity sensor is based on the measurement of the radial deflection of the charged particles which flow between the point and the two half-planes, this deflection being caused by the motion of the air particles resulting from the acoustic field. An electroacoustic model of this velocity sensor is proposed, based on the fluctuations of the current density distribution over the plane electrodes. An experimental set-up is developed using a waveguide. It allows to compare simultaneously the acoustic velocity deduced from the corona discharge sensor on one side, and that resulting from the two-microphone meth od on the other side. This paper also proposes a parametric study to quantify the influence of the electrical and geometrical parameters of the discharge on this acoustic sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.