In the field of cloud computing, Infrastructure as a Service (IaaS) provides virtualized on-demand computing resources on a pay-per-use model. IaaS Cloud differ from traditional mutualized infrastructures in that the resources can be dynamically claimed and released, and the real hardware infrastructure is unknown to its users. These properties drastically changes the way resource provisioning and job scheduling can be addressed by the user because i) the large number of jobs and resources to handle becomes rapidly overwhelming for human operators, and ii) the real performances of the platform should be inferred from observations to make robust scheduling decisions. In order to optimize the resources usage by the client, we advocate the need for brokers on the client-side. This article presents our work based on Schlouder, a broker of IaaS cloud resources able to provision and schedule independent jobs or static workflows according to strategies chosen by the client. Further, we advocate that simulation can be a precious auxiliary to help the user to choose between provisioning strategies. Schlouder brings a unique feature which is to predict through simulation the makespan and cost of executions under various strategies. The contribution of this work is twofold. First, it presents the broker, available as an open source project, in which new provisioning strategies can be plugged in by third parties. The effectiveness of the tool is demonstrated through experiments involving actual applications and platforms. Second, we show that simulation produces accurate predictions making this feature a helpful means for the user to choose the appropriate strategy.
International audienceEvery day, numerous VMs are migrated inside a datacenter to balance the load, save energy or prepare production servers for maintenance. Despite VM placement problems are carefully studied, the underlying migration scheduler relies on vague adhoc models. This leads to unnecessarily long and energy-intensive migrations
Abstract. In a virtualized data center, server maintenance is a common but still critical operation. A prerequisite is indeed to relocate elsewhere the Virtual Machines (VMs) running on the production servers to prepare them for the maintenance. When the maintenance focuses several servers, this may lead to a costly relocation of several VMs so the migration plan must be chose wisely. This however implies to master numerous human, technical, and economical aspects that play a role in the design of a quality migration plan. In this paper, we study migration plans that can be decided by an operator to prepare for an hardware upgrade or a server refresh on multiple servers. We exhibit performance bottleneck and pitfalls that reduce the plan efficiency. We then discuss and validate possible improvements deduced from the knowledge of the environment peculiarities.
Every day, numerous VMs are migrated inside a datacenter to balance the load, save energy or prepare production servers for maintenance. Despite VM placement problems are carefully studied, the underlying migration scheduler rely on vague adhoc models. This leads to unnecessarily long and energy-intensive migrations.We present mVM, a new and extensible migration scheduler. mVM takes into account the VM memory workload and the network topology to estimate precisely the migration duration and take wiser scheduling decisions. mVM is implemented as a plugin of BtrPlace and can be customized with additional scheduling constraints to finely control the migrations. Experiments on a real testbed show mVM outperforms schedulers that cap the migration parallelism by a constant to reduce the completion time. Besides an optimal capping, mVM reduces the migration duration by 20.4% on average and the completion time by 28.1%. In a maintenance operation involving 96 VMs to migrate between 72 servers, mVM saves 21.5% Joules against BtrPlace. Finally, its current library of 6 constraints allows administrators to address temporal and energy concerns, for example to adapt the schedule and fit a power budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.