Outer shelf sedimentary records are promising for determining the recurrence intervals of tsunamis. However, compared to onshore deposits, offshore deposits are more difficult to access, and so far, studies of outer shelf tsunami deposits are scarce. Here, an example of studying these deposits is presented to infer implications for tsunami-related signatures in similar environments and potentially contribute to pre-historic tsunami event detections. A multidisciplinary approach was performed to detect the sedimentary imprints left by the 1755 CE tsunami in two cores, located in the southern Portuguese continental shelf at water depths of 58 and 91 m. Age models based on 14C and 210Pbxs allowed a probable correspondence with the 1755 CE tsunami event. A multi-proxy approach, including sand composition, grain-size, inorganic geochemistry, magnetic susceptibility, and microtextural features on quartz grain surfaces, yielded evidence for a tsunami depositional signature, although only a subtle terrestrial signal is present. A low contribution of terrestrial material to outer shelf tsunami deposits calls for methodologies that reveal sedimentary structures linked to tsunami event hydrodynamics. Finally, a change in general sedimentation after the tsunami event might have influenced the signature of the 1755 CE tsunami in the outer shelf environment.
<p>The importance of tsunami hazard assessment is only possible if a complete dataset of events is available, allowing the determination of the recurrence intervals of the tsunamis adapted to local and regional conditions. One possible way to know these intervals is to study the offshore sedimentary record, looking for sediment remobilised and transported by the incoming tsunami waves and generated backwash currents. Even if these deposits are not of easy access (and not so well studied), the tsunami depositional signature has potential to be better preserved than those located onshore.</p><p>A multidisciplinary approach was performed to detect the sedimentary imprints left by the 1755 CE Lisbon tsunami event in three cores located in southern Portuguese continental shelf at water depths between 57 and 91 m. Age models based on <sup>14</sup>C and <sup>210</sup>Pb<sub>xs</sub> data allowed a probable correspondence with the 1755 CE Lisbon tsunami.</p><p>The present study was based in high-resolution analyses using several methodologies such as sand composition, grain size, inorganic geochemistry and microtextural features on quartz grain surfaces. The results yielded evidences for a tsunamigenic origin although no remarkable terrigenous signal is present. Spatial depositional differences of tsunami sediments were detected in the study area by differences in grain size, sand composition and simulated horizontal surface velocities. Also, the heterogeneous and mixing character of the 1755 CE Lisbon offshore tsunami deposits indicate more complex sedimentary conditions compared to the background sedimentation.</p><p>This study shows that in fact the sediment layers corresponding to a tsunami event can be preserved in mid to outer continental shelf environments (other extreme events such as storms were excluded trough hydrodynamic calculations), but its identification and characterization can be done only with a good assemblage of different proxies.</p><p><em>This is a contribution of ASTARTE project (FP7-Grant agreement no: 603839) and CIMA project (UID/MAR/00350/2013).</em></p>
The analysis of extreme wave conditions is crucial for understanding and mitigating coastal hazards. As global wave reanalyses allow to extend the evaluation of wave conditions to periods and locations not covered by in-situ measurements, their direct use is common. However, in coastal areas, the accuracy of global reanalyses is lower, particularly for extreme waves. Here we compare two leading global wave reanalyses against 326 coastal buoys, demonstrating that both reanalyses consistently underestimate significant wave height, 50-year return period and mean wave period in most coastal locations around the world. Different calibration methods applied to improve the modelled extreme waves, resulting in a 53% reduction in the underestimation of extreme wave heights. Importantly, the 50-year return period for significant wave height is improved on average by 55%. Extreme wave statistics determined for coastal areas directly from global wave reanalyses require careful consideration, with calibration largely reducing uncertainty and improving confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.