His Ph.D. was in collaboration with Solvay-Solexis and devoted to the synthesis of new graft copolymers using grafting "to". In 2005, he undertook a postdoctorate position with Dupont Performance and Elastomers (Willmington, United States) and Dr. B. Ameduri dealing with the synthesis of original fluorinated elastomers using controlled radical polymerization (e.g., iodine transfer polymerization). Since October 2006, he has been a senior research fellow under the direction of Prof. Thomas Davis in the Centre of Advanced Macromolecular Design (CAMD), University of New South Wales. His research interests mainly cover the preparation of well-defined polymers, protein-polymer conjugates, and hybrid organic-inorganic nanoparticles using controlled radical polymerization. He has coauthored over 40 peer-reviewed research papers, including 2 book chapters, and 2 patents. Volga Bulmus received her B.E. and M.Sc. in Chemical Engineering and her Ph.D. in bioengineering (Hacettepe University, Turkey), in 2000. She worked as a postdoctoral research fellow in the Bioengineering Department at the University of Washington between 2001 and 2003. In 2004, she was granted a highly competitive The University of New South Wales (UNSW) Vice Chancellor's Research Fellowship (Australia). In 2008, she was appointed as a Senior Lecturer at the School of Biotechnology and Biomolecular Sciences (UNSW). She is also an adjunct member of The Centre for Advanced Macromolecular Design (CAMD) at UNSW. Dr. Bulmus leads a group of 5-10 researchers working on the development of advanced polymers for biotechnology and biomedical applications. She has published over 45 peer reviewed research papers. Her research interests include design, synthesis, and evaluation of well-defined polymeric systems for nanobiotechnology and drug delivery applications ranging from antitumor chemotherapy and gene silencing to bioseparations and biosensors. Tom Davis has been an academic at UNSW for 17 years following a stint in industry as a research manager at ICI in the U.K. He has coauthored 315+ reviewed papers, patents, and book chapters. He is the Director of the Centre for Advanced Macromolecular Design (CAMD) at UNSWsa Centre with expertise in bio/organic polymer synthesis and polymerization kinetics. He is also a visiting Professor at the Institute for Materials Research & Engineering (IMRE) in Singapore. In 2005 he was awarded a Federation Fellowship by the Australian Research Council. He serves (or has served) on the editorial advisory boards of Macromolecules,
The synthesis of novel well-defined alkyne side chain functional polymers featuring narrow molecular weight distributions (PDI = 1.09−1.17) by living radical polymerization is described. Grafting of protected and unprotected carbohydrates is achieved via either a C-6 or an anomeric azide (α or β) onto these polymers by Cu(I)-catalyzed “click chemistry”, providing a simple and efficient route to synthetic glycopolymers. The strategy provides an extremely powerful tool for the synthesis of libraries of materials that differ only in the nature of the sugar moiety presented on a well-defined polymer scaffold. A library of multivalent ligands were then prepared following a “coclicking” synthetic protocol, and the reactivity of these glycopolymers in the presence of concanavalin A and Ricinus communis agglutinin, model lectins able to selectively bind appropriate mannose and galactose derivatives, respectively, was assessed.
ABSTRACT. Well-defined poly(lauryl methacrylate-benzyl methacrylate) (PLMA-PBzMA) diblock copolymer nanoparticles are prepared in n-heptane at 90°C via reversible addition-fragmentation chain transfer (RAFT) polymerization. Under these conditions, the PLMA macromolecular chain transfer agent (macro-CTA) is soluble in n-heptane, whereas the growing PBzMA block quickly becomes insoluble. Thus this dispersion polymerization formulation leads to polymerization-induced self-assembly (PISA). 10Using a relatively long PLMA macro-CTA with a mean degree of polymerization (DP) of 37 or higher leads to the formation of well-defined spherical nanoparticles of 41 to 139 nm diameter, depending on the DP targeted for the PBzMA block. In contrast, TEM studies confirm that using a relatively short PLMA macro-CTA (DP = 17) enables both worm-like and vesicular morphologies to be produced, in addition to the spherical phase. A detailed phase diagram has been elucidated for this more asymmetric diblock 15 copolymer formulation, which ensures that each phase can be targeted reproducibly.1 H NMR spectroscopy confirmed that high BzMA monomer conversions (> 97 %) were achieved within 5 h, while GPC studies indicated that reasonably good blocking efficiencies and relatively low diblock copolymer polydispersities (M w /M n < 1.30) were obtained in most cases. Compared to prior literature reports, this allmethacrylic PISA formulation is particularly novel because: (i) it is the first time that higher order 20 morphologies (e.g. worms and vesicles) have been accessed in non-polar solvents and (ii) such diblock copolymer nano-objects are particularly relevant to potential boundary lubrication applications for engine oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.