Multi-access edge computing (MEC) has recently been proposed to aid mobile end devices in providing compute-and data-intensive services with low latency. Growing service demands by the end devices may overwhelm MEC installations, while cost constraints limit the increases of the installed MEC computing and data storage capacities. At the same time, the ever increasing computation capabilities and storage capacities of mobile end devices are valuable resources that can be utilized to enhance the MEC. This article comprehensively surveys the topic area of device-enhanced MEC, i.e., mechanisms that jointly utilize the resources of the community of end devices and the installed MEC to provide services to end devices. We classify the device-enhanced MEC mechanisms into mechanisms for computation offloading and mechanisms for caching. We further subclassify the offloading and caching mechanisms according to the targeted performance goals, which include throughput maximization, latency minimization, energy conservation, utility maximization, and enhanced security. We identify the main limitations of the existing device-enhanced MEC mechanisms and outline future research directions. INDEX TERMS Caching, computation offloading, device-to-device (D2D) communication, mobile edge computing (MEC). I. INTRODUCTION A. MOTIVATION
No abstract
Traffic light control falls into two main categories: Agnostic systems that do not exploit knowledge of the current traffic state, e.g., the positions and velocities of vehicles approaching intersections, and holistic systems that exploit knowledge of the current traffic state. Emerging fifth generation (5G) wireless networks enable Vehicle-to-Infrastructure (V2I) communication to reliably and quickly collect the current traffic state. However, to the best of our knowledge, the optimized traffic light management without and with current traffic state information has not been compared in detail. This study fills this gap in the literature by designing representative Deep Reinforcement Learning (DRL) agents that learn the control of multiple traffic lights without and with current traffic state information. Our agnostic agent considers mainly the current phase of all traffic lights and the expired times since the last change. In addition, our holistic agent considers the positions and velocities of the vehicles approaching the intersections. We compare the agnostic and holistic agents for simulated traffic scenarios, including a road network from Barcelona, Spain. We find that the holistic system substantially increases average vehicle velocities and flow rates, while reducing CO2 emissions, average wait and trip times, as well as a driver stress metric. Index Terms-Deep reinforcement learning (DRL), intelligent transportation system (ITS), intersection control, vehicle-toinfrastructure communication (V2I).
Cooperative edge offloading to nearby end devices via Device-to-Device (D2D) links in edge networks with sliced computing resources has mainly been studied for end devices (helper nodes) that are stationary (or follow predetermined mobility paths) and for independent computation tasks. However, end devices are often mobile, and a given application request commonly requires a set of dependent computation tasks. We formulate a novel model for the cooperative edge offloading of dependent computation tasks to mobile helper nodes. We model the task dependencies with a general task dependency graph. Our model employs the state-of-the-art deep-learning-based PECNet mobility model and offloads a task only when the sojourn time in the coverage area of a helper node or Multi-access Edge Computing (MEC) server is sufficiently long. We formulate the minimization problem for the consumed battery energy for task execution, task data transmission, and waiting for offloaded task results on end devices. We convert the resulting non-convex mixed integer nonlinear programming problem into an equivalent quadratically constrained quadratic programming (QCQP) problem, which we solve via a novel Energy-Efficient Task Offloading (EETO) algorithm. The numerical evaluations indicate that the EETO approach consistently reduces the battery energy consumption across a wide range of task complexities and task completion deadlines and can thus extend the battery lifetimes of mobile devices operating with sliced edge computing resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.