A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples.
The relaxivity of a magnetically responsive Gd complex can be controlled by non-covalent molecular recognition with a water-soluble deep cavitand. Lowered relaxivity is conferred by a self-assembled micellar “off state”, and the contrast can be regenerated by addition of a superior guest.
We report herein convenient, aerobic conditions for the oxidation of thiazolines to thiazoles and data regarding the oxidation mechanism. These reactions feature operationally simple and environmentally benign conditions and proceed in good yield to afford the corresponding azoles, thus enabling the inexpensive preparation of valuable molecular building blocks. Incorporation of a novel diimine-ligated copper catalyst, [((Mes)DAB(Me))Cu(II)(OH(2))(3)](2+) [(-)OTf](2), provides increased reaction efficiency in many cases. In other cases copper-free conditions involving a stoichiometric quantity of base affords superior results.
Gadolinium-containing phosphonate-coated gold nanoparticles were prepared and then non-covalently coated with an amphiphilic fluorous monomer. The monomer spontaneously self-assembles into a non-covalent monolayer shell around the particle. The binding of the shell utilizes a guanidinium-phosphonate interaction analogous to the one exploited by the Wender molecular transporter system. Particle-shell binding was characterized by a 27% decrease in 19F T1 of the fluorous shell upon exposure to the paramagnetic gadolinium in the particle and a corresponding increase in hydrodynamic diameter from 3 nm to 4 nm. Interestingly, a much smaller modulation of 19F T1 is observed when the shell monomer is treated with a phosphonate-free particle. By contrast, the phosphonate-free particle is a much more relaxive 1H T1 agent for water. Together, these observations show that the fluoroalkylguanidinium shell binds selectively to the phosphonate-covered particle. The system’s relaxivity and selectivity give it potential for use in 19F based nanotheranostic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.